利用机器学习原子间电位改善金属盐水溶液相互作用。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Feranmi V Olowookere, C Heath Turner
{"title":"利用机器学习原子间电位改善金属盐水溶液相互作用。","authors":"Feranmi V Olowookere, C Heath Turner","doi":"10.1021/acs.jpcb.5c04022","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate modeling of aqueous metal salt solutions is essential for understanding processes relevant to environmental safety, energy storage, and separation technologies. Trace metals such as As<sup>3+</sup> at low concentrations pose significant health and environmental risks. They are challenging to simulate due to limitations in both classical force fields (CFFs), which lack accuracy, and <i>ab initio</i> methods, which are restricted to short trajectories. In this study, we develop machine-learned interatomic potentials (MLIPs) to model aqueous AsCl<sub>3</sub> and MgCl<sub>2</sub> using the NequIP/Allegro equivariant graph neural network architecture trained on <i>ab initio</i> molecular dynamics (AIMD) and density functional theory data. Our MLIP models accurately reproduce <i>ab initio</i> energies and forces while capturing solvation structure, ion diffusion, and hydration dynamics more effectively than CFFs (AMBER and UFF models). Our MLIPs achieve energy MAEs < 1 meV/atom and force RMSEs < 40 meV/Å, while providing an O(10<sup>4</sup>) speedup over AIMD. These MLIPs offer a reliable and efficient alternative for modeling trace metal speciation and transport, with implications for improved separation and environmental processes.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Aqueous Metal Salt Interactions Using Machine-Learned Interatomic Potentials.\",\"authors\":\"Feranmi V Olowookere, C Heath Turner\",\"doi\":\"10.1021/acs.jpcb.5c04022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate modeling of aqueous metal salt solutions is essential for understanding processes relevant to environmental safety, energy storage, and separation technologies. Trace metals such as As<sup>3+</sup> at low concentrations pose significant health and environmental risks. They are challenging to simulate due to limitations in both classical force fields (CFFs), which lack accuracy, and <i>ab initio</i> methods, which are restricted to short trajectories. In this study, we develop machine-learned interatomic potentials (MLIPs) to model aqueous AsCl<sub>3</sub> and MgCl<sub>2</sub> using the NequIP/Allegro equivariant graph neural network architecture trained on <i>ab initio</i> molecular dynamics (AIMD) and density functional theory data. Our MLIP models accurately reproduce <i>ab initio</i> energies and forces while capturing solvation structure, ion diffusion, and hydration dynamics more effectively than CFFs (AMBER and UFF models). Our MLIPs achieve energy MAEs < 1 meV/atom and force RMSEs < 40 meV/Å, while providing an O(10<sup>4</sup>) speedup over AIMD. These MLIPs offer a reliable and efficient alternative for modeling trace metal speciation and transport, with implications for improved separation and environmental processes.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.5c04022\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c04022","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属盐水溶液的精确建模对于理解与环境安全、能量储存和分离技术相关的过程至关重要。低浓度的As3+等微量金属对健康和环境构成重大风险。由于缺乏精度的经典力场(cff)和限制于短轨迹的从头算方法的局限性,它们的模拟具有挑战性。在这项研究中,我们开发了机器学习原子间电位(MLIPs),利用从头算分子动力学(AIMD)和密度泛函理论数据训练的NequIP/Allegro等变图神经网络架构来模拟含水AsCl3和MgCl2。我们的MLIP模型比cff (AMBER和UFF模型)更有效地重现了从头计算的能量和力,同时捕获了溶剂化结构、离子扩散和水化动力学。我们的MLIPs实现了能量MAEs < 1 meV/原子,力rmse < 40 meV/Å,同时提供比AIMD 0(104)的加速。这些mlip为模拟痕量金属形态和运输提供了可靠和有效的替代方法,对改进分离和环境过程具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Aqueous Metal Salt Interactions Using Machine-Learned Interatomic Potentials.

Accurate modeling of aqueous metal salt solutions is essential for understanding processes relevant to environmental safety, energy storage, and separation technologies. Trace metals such as As3+ at low concentrations pose significant health and environmental risks. They are challenging to simulate due to limitations in both classical force fields (CFFs), which lack accuracy, and ab initio methods, which are restricted to short trajectories. In this study, we develop machine-learned interatomic potentials (MLIPs) to model aqueous AsCl3 and MgCl2 using the NequIP/Allegro equivariant graph neural network architecture trained on ab initio molecular dynamics (AIMD) and density functional theory data. Our MLIP models accurately reproduce ab initio energies and forces while capturing solvation structure, ion diffusion, and hydration dynamics more effectively than CFFs (AMBER and UFF models). Our MLIPs achieve energy MAEs < 1 meV/atom and force RMSEs < 40 meV/Å, while providing an O(104) speedup over AIMD. These MLIPs offer a reliable and efficient alternative for modeling trace metal speciation and transport, with implications for improved separation and environmental processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信