无线网络中基于大模型的多社区虚拟交互方案

IF 0.5 Q4 TELECOMMUNICATIONS
Liping Zhang
{"title":"无线网络中基于大模型的多社区虚拟交互方案","authors":"Liping Zhang","doi":"10.1002/itl2.70147","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The increasing ubiquity of 5G/6G wireless communication networks has created unprecedented opportunities for multi-community collaboration and virtual engagement. However, existing platforms often fail to support scalable, context-aware, and efficient interaction across decentralized social groups. In this paper, we propose LM-MCVIS (Large Model-Based Multi-Community Virtual Interaction Scheme), a novel framework designed to facilitate personalized content exchange and context-aware message routing in wireless community networks. LM-MCVIS integrates three key components: (1) an Edge-Aware Prompt Compression (EPC) module that semantically distills conversation inputs to reduce wireless transmission overhead; (2) a Community State Encoder (CSE) that models dynamic group structures and latent social contexts; and (3) a Federated Reinforcement Optimizer (FRO) that enables privacy-preserving, feedback-driven content routing. We evaluate LM-MCVIS on three public multi-community datasets using a high-fidelity 5G/6G emulator and benchmark its performance against five strong baselines. Results demonstrate significant gains in engagement depth, interaction diversity, response latency, and bandwidth savings. Ablation studies further validate the individual impact of each module. LM-MCVIS offers a scalable and modular paradigm for intelligent community interaction over wireless networks, with broad implications for collaborative learning, digital governance, and decentralized social ecosystems.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Model-Based Multi-Community Virtual Interaction Scheme in Wireless Networks\",\"authors\":\"Liping Zhang\",\"doi\":\"10.1002/itl2.70147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The increasing ubiquity of 5G/6G wireless communication networks has created unprecedented opportunities for multi-community collaboration and virtual engagement. However, existing platforms often fail to support scalable, context-aware, and efficient interaction across decentralized social groups. In this paper, we propose LM-MCVIS (Large Model-Based Multi-Community Virtual Interaction Scheme), a novel framework designed to facilitate personalized content exchange and context-aware message routing in wireless community networks. LM-MCVIS integrates three key components: (1) an Edge-Aware Prompt Compression (EPC) module that semantically distills conversation inputs to reduce wireless transmission overhead; (2) a Community State Encoder (CSE) that models dynamic group structures and latent social contexts; and (3) a Federated Reinforcement Optimizer (FRO) that enables privacy-preserving, feedback-driven content routing. We evaluate LM-MCVIS on three public multi-community datasets using a high-fidelity 5G/6G emulator and benchmark its performance against five strong baselines. Results demonstrate significant gains in engagement depth, interaction diversity, response latency, and bandwidth savings. Ablation studies further validate the individual impact of each module. LM-MCVIS offers a scalable and modular paradigm for intelligent community interaction over wireless networks, with broad implications for collaborative learning, digital governance, and decentralized social ecosystems.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

5G/6G无线通信网络的日益普及为多社区协作和虚拟参与创造了前所未有的机会。然而,现有的平台往往不能支持可扩展的、上下文感知的、跨分散社会群体的高效交互。在本文中,我们提出了LM-MCVIS(基于大型模型的多社区虚拟交互方案),这是一个新的框架,旨在促进无线社区网络中的个性化内容交换和上下文感知消息路由。LM-MCVIS集成了三个关键组件:(1)边缘感知提示压缩(EPC)模块,该模块从语义上提取会话输入,以减少无线传输开销;(2)社区状态编码器(Community State Encoder, CSE),用于模拟动态群体结构和潜在社会背景;(3)支持隐私保护、反馈驱动的内容路由的联邦强化优化器(FRO)。我们使用高保真5G/6G模拟器在三个公共多社区数据集上评估LM-MCVIS,并根据五个强基线对其性能进行基准测试。结果表明,在参与深度、交互多样性、响应延迟和带宽节省方面有显著的提高。消融研究进一步验证了每个模块的单独影响。LM-MCVIS为无线网络上的智能社区交互提供了可扩展和模块化的范例,对协作学习、数字治理和分散的社会生态系统具有广泛的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large Model-Based Multi-Community Virtual Interaction Scheme in Wireless Networks

Large Model-Based Multi-Community Virtual Interaction Scheme in Wireless Networks

The increasing ubiquity of 5G/6G wireless communication networks has created unprecedented opportunities for multi-community collaboration and virtual engagement. However, existing platforms often fail to support scalable, context-aware, and efficient interaction across decentralized social groups. In this paper, we propose LM-MCVIS (Large Model-Based Multi-Community Virtual Interaction Scheme), a novel framework designed to facilitate personalized content exchange and context-aware message routing in wireless community networks. LM-MCVIS integrates three key components: (1) an Edge-Aware Prompt Compression (EPC) module that semantically distills conversation inputs to reduce wireless transmission overhead; (2) a Community State Encoder (CSE) that models dynamic group structures and latent social contexts; and (3) a Federated Reinforcement Optimizer (FRO) that enables privacy-preserving, feedback-driven content routing. We evaluate LM-MCVIS on three public multi-community datasets using a high-fidelity 5G/6G emulator and benchmark its performance against five strong baselines. Results demonstrate significant gains in engagement depth, interaction diversity, response latency, and bandwidth savings. Ablation studies further validate the individual impact of each module. LM-MCVIS offers a scalable and modular paradigm for intelligent community interaction over wireless networks, with broad implications for collaborative learning, digital governance, and decentralized social ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信