深度学习加速了具有各种强度-韧性权衡的多主元素合金的发现

Chunhui Fan, Hong Luo, Qiancheng Zhao, Xuefei Wang, Hongxu Cheng, Yue Chang
{"title":"深度学习加速了具有各种强度-韧性权衡的多主元素合金的发现","authors":"Chunhui Fan,&nbsp;Hong Luo,&nbsp;Qiancheng Zhao,&nbsp;Xuefei Wang,&nbsp;Hongxu Cheng,&nbsp;Yue Chang","doi":"10.1002/mgea.70020","DOIUrl":null,"url":null,"abstract":"<p>Machine learning has significantly enhanced the efficiency of multi-principal element alloys (MPEAs) development. Nonetheless, despite its potential, the rapid discovery of MPEAs with various strength-toughness trade-offs remains a largely unexplored area. This challenge lies in the inherent trade-off between strength and toughness, the complexity and scarcity of existing MPEAs data, and the absence of efficient strategies for Pareto front optimization in high-dimensional and sparse composition design spaces. Here, we present an alloy design framework that integrates multiple deep learning models and Pareto optimization algorithms to address these challenges. Remarkably, through merely three iterations, the framework yields eight MPEAs that notably surpassed the original dataset benchmarks, showing varied strength-toughness trade-offs. Microstructural analysis further confirmed the framework's ability to influence phase formation and microstructure through precise alloy composition adjustments, achieving outstanding and various strength-toughness combinations. Given its effectiveness, it holds substantial application potential in accelerating the design of materials tailored to meet a wide range of strength and toughness requirements.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70020","citationCount":"0","resultStr":"{\"title\":\"Deep learning accelerated the discovery of multi-principal element alloys with various strength-toughness trade-offs\",\"authors\":\"Chunhui Fan,&nbsp;Hong Luo,&nbsp;Qiancheng Zhao,&nbsp;Xuefei Wang,&nbsp;Hongxu Cheng,&nbsp;Yue Chang\",\"doi\":\"10.1002/mgea.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning has significantly enhanced the efficiency of multi-principal element alloys (MPEAs) development. Nonetheless, despite its potential, the rapid discovery of MPEAs with various strength-toughness trade-offs remains a largely unexplored area. This challenge lies in the inherent trade-off between strength and toughness, the complexity and scarcity of existing MPEAs data, and the absence of efficient strategies for Pareto front optimization in high-dimensional and sparse composition design spaces. Here, we present an alloy design framework that integrates multiple deep learning models and Pareto optimization algorithms to address these challenges. Remarkably, through merely three iterations, the framework yields eight MPEAs that notably surpassed the original dataset benchmarks, showing varied strength-toughness trade-offs. Microstructural analysis further confirmed the framework's ability to influence phase formation and microstructure through precise alloy composition adjustments, achieving outstanding and various strength-toughness combinations. Given its effectiveness, it holds substantial application potential in accelerating the design of materials tailored to meet a wide range of strength and toughness requirements.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习极大地提高了多主元素合金(mpea)的开发效率。然而,尽管具有潜力,但快速发现具有各种强度-韧性权衡的mpea仍然是一个未开发的领域。这一挑战在于强度和韧性之间的内在权衡,现有mpea数据的复杂性和稀缺性,以及缺乏在高维和稀疏组合设计空间中进行帕累托前沿优化的有效策略。在这里,我们提出了一个合金设计框架,该框架集成了多种深度学习模型和帕累托优化算法来解决这些挑战。值得注意的是,仅经过三次迭代,该框架就产生了八个mpea,明显超过了原始数据集基准,显示出不同的强度-韧性权衡。显微组织分析进一步证实了该框架能够通过精确的合金成分调整来影响相形成和微观组织,从而实现出色的各种强度-韧性组合。鉴于其有效性,它在加速材料设计以满足广泛的强度和韧性要求方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning accelerated the discovery of multi-principal element alloys with various strength-toughness trade-offs

Deep learning accelerated the discovery of multi-principal element alloys with various strength-toughness trade-offs

Machine learning has significantly enhanced the efficiency of multi-principal element alloys (MPEAs) development. Nonetheless, despite its potential, the rapid discovery of MPEAs with various strength-toughness trade-offs remains a largely unexplored area. This challenge lies in the inherent trade-off between strength and toughness, the complexity and scarcity of existing MPEAs data, and the absence of efficient strategies for Pareto front optimization in high-dimensional and sparse composition design spaces. Here, we present an alloy design framework that integrates multiple deep learning models and Pareto optimization algorithms to address these challenges. Remarkably, through merely three iterations, the framework yields eight MPEAs that notably surpassed the original dataset benchmarks, showing varied strength-toughness trade-offs. Microstructural analysis further confirmed the framework's ability to influence phase formation and microstructure through precise alloy composition adjustments, achieving outstanding and various strength-toughness combinations. Given its effectiveness, it holds substantial application potential in accelerating the design of materials tailored to meet a wide range of strength and toughness requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信