{"title":"解决失踪重子问题:观测和理论进展综述","authors":"V. Priyadharshini, S. Vijikumar, V. Bhuvaneshwari","doi":"10.1134/S0040577925060017","DOIUrl":null,"url":null,"abstract":"<p> The missing baryon problem represents a longstanding challenge in cosmology, highlighting a discrepancy between the amount of baryonic matter predicted by cosmological models and the amount directly observed in the universe. While observations of the cosmic microwave background and Big Bang nucleosynthesis accurately constrain the baryon density of the early universe, only a fraction of this baryonic matter is accounted for in stars, galaxies, and hot gas within galaxy clusters today. Recent advances suggest that much of the missing baryonic matter resides in the warm–hot intergalactic medium (WHIM), a diffuse, filamentary gas with temperatures of <span>\\(10^5\\)</span>–<span>\\(10^7\\)</span> K. Detecting the WHIM has been challenging due to its low density and weak emissions. However, breakthroughs in observational techniques, such as X-ray and UV spectroscopy, along with cosmological simulations, have provided compelling evidence for its presence. This review synthesizes the latest theoretical and observational efforts to locate the missing baryons, emphasizing the role of the WHIM, novel detection strategies, and their implications for understanding large-scale cosmic structure and galaxy formation. Future missions promise to refine these findings, bringing us closer to resolving this fundamental issue in astrophysics. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"223 3","pages":"879 - 887"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the missing baryon problem: A review of observational and theoretical advances\",\"authors\":\"V. Priyadharshini, S. Vijikumar, V. Bhuvaneshwari\",\"doi\":\"10.1134/S0040577925060017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The missing baryon problem represents a longstanding challenge in cosmology, highlighting a discrepancy between the amount of baryonic matter predicted by cosmological models and the amount directly observed in the universe. While observations of the cosmic microwave background and Big Bang nucleosynthesis accurately constrain the baryon density of the early universe, only a fraction of this baryonic matter is accounted for in stars, galaxies, and hot gas within galaxy clusters today. Recent advances suggest that much of the missing baryonic matter resides in the warm–hot intergalactic medium (WHIM), a diffuse, filamentary gas with temperatures of <span>\\\\(10^5\\\\)</span>–<span>\\\\(10^7\\\\)</span> K. Detecting the WHIM has been challenging due to its low density and weak emissions. However, breakthroughs in observational techniques, such as X-ray and UV spectroscopy, along with cosmological simulations, have provided compelling evidence for its presence. This review synthesizes the latest theoretical and observational efforts to locate the missing baryons, emphasizing the role of the WHIM, novel detection strategies, and their implications for understanding large-scale cosmic structure and galaxy formation. Future missions promise to refine these findings, bringing us closer to resolving this fundamental issue in astrophysics. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"223 3\",\"pages\":\"879 - 887\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925060017\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925060017","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Solving the missing baryon problem: A review of observational and theoretical advances
The missing baryon problem represents a longstanding challenge in cosmology, highlighting a discrepancy between the amount of baryonic matter predicted by cosmological models and the amount directly observed in the universe. While observations of the cosmic microwave background and Big Bang nucleosynthesis accurately constrain the baryon density of the early universe, only a fraction of this baryonic matter is accounted for in stars, galaxies, and hot gas within galaxy clusters today. Recent advances suggest that much of the missing baryonic matter resides in the warm–hot intergalactic medium (WHIM), a diffuse, filamentary gas with temperatures of \(10^5\)–\(10^7\) K. Detecting the WHIM has been challenging due to its low density and weak emissions. However, breakthroughs in observational techniques, such as X-ray and UV spectroscopy, along with cosmological simulations, have provided compelling evidence for its presence. This review synthesizes the latest theoretical and observational efforts to locate the missing baryons, emphasizing the role of the WHIM, novel detection strategies, and their implications for understanding large-scale cosmic structure and galaxy formation. Future missions promise to refine these findings, bringing us closer to resolving this fundamental issue in astrophysics.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.