辐射对具有热扩散的可渗透表面瞬态MHD对流的影响

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Sk. Nuslin, D. A. Rawoof, P. L. Pallavi, D. Padma, D. Naheed, M. L. Gundagani
{"title":"辐射对具有热扩散的可渗透表面瞬态MHD对流的影响","authors":"Sk. Nuslin,&nbsp;D. A. Rawoof,&nbsp;P. L. Pallavi,&nbsp;D. Padma,&nbsp;D. Naheed,&nbsp;M. L. Gundagani","doi":"10.1134/S0040577925060042","DOIUrl":null,"url":null,"abstract":"<p> We investigate the impact of radiation on a transient magnetohydrodynamic (MHD) natural convective flow past an upright permeable surface, considering the thermal diffusion. The fundamental equations, a coupled system of nonlinear partial differential equations, defy analytical solutions. Consequently, a numerical solution employing the Galerkin finite-element method was implemented. We explore the flow behavior under varying conditions, encompassing the thermal diffusion, Schmidt number, Grashof number, magnetic field strength, Prandtl number, heat source parameter, and radiative parameter. Results are presented graphically, illustrating the variations in velocity, temperature, and density profiles. Furthermore, the analysis quantifies the effects on the coefficient of skin friction and the Nusselt number. This comprehensive numerical approach provides valuable insights into the complex interplay of these parameters within the specified MHD free convective flow regime. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"223 3","pages":"915 - 925"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation influence on transient MHD convection over a permeable surface with thermal diffusion\",\"authors\":\"Sk. Nuslin,&nbsp;D. A. Rawoof,&nbsp;P. L. Pallavi,&nbsp;D. Padma,&nbsp;D. Naheed,&nbsp;M. L. Gundagani\",\"doi\":\"10.1134/S0040577925060042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We investigate the impact of radiation on a transient magnetohydrodynamic (MHD) natural convective flow past an upright permeable surface, considering the thermal diffusion. The fundamental equations, a coupled system of nonlinear partial differential equations, defy analytical solutions. Consequently, a numerical solution employing the Galerkin finite-element method was implemented. We explore the flow behavior under varying conditions, encompassing the thermal diffusion, Schmidt number, Grashof number, magnetic field strength, Prandtl number, heat source parameter, and radiative parameter. Results are presented graphically, illustrating the variations in velocity, temperature, and density profiles. Furthermore, the analysis quantifies the effects on the coefficient of skin friction and the Nusselt number. This comprehensive numerical approach provides valuable insights into the complex interplay of these parameters within the specified MHD free convective flow regime. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"223 3\",\"pages\":\"915 - 925\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925060042\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925060042","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了辐射对瞬态磁流体动力学(MHD)自然对流流过垂直可渗透表面的影响,并考虑了热扩散。基本方程,一个非线性偏微分方程的耦合系统,无法解析解。因此,采用伽辽金有限元法实现了数值解。我们研究了不同条件下的流动行为,包括热扩散、施密特数、格拉什夫数、磁场强度、普朗特数、热源参数和辐射参数。结果以图形形式呈现,说明了速度、温度和密度剖面的变化。此外,分析量化了对表面摩擦系数和努塞尔数的影响。这种全面的数值方法提供了有价值的见解,这些参数的复杂的相互作用,在指定的MHD自由对流流动制度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiation influence on transient MHD convection over a permeable surface with thermal diffusion

We investigate the impact of radiation on a transient magnetohydrodynamic (MHD) natural convective flow past an upright permeable surface, considering the thermal diffusion. The fundamental equations, a coupled system of nonlinear partial differential equations, defy analytical solutions. Consequently, a numerical solution employing the Galerkin finite-element method was implemented. We explore the flow behavior under varying conditions, encompassing the thermal diffusion, Schmidt number, Grashof number, magnetic field strength, Prandtl number, heat source parameter, and radiative parameter. Results are presented graphically, illustrating the variations in velocity, temperature, and density profiles. Furthermore, the analysis quantifies the effects on the coefficient of skin friction and the Nusselt number. This comprehensive numerical approach provides valuable insights into the complex interplay of these parameters within the specified MHD free convective flow regime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信