在反应扩散平衡的情况下,反应扩散问题中的锋面运动

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. O. Orlov, A. R. Makhmudov
{"title":"在反应扩散平衡的情况下,反应扩散问题中的锋面运动","authors":"A. O. Orlov,&nbsp;A. R. Makhmudov","doi":"10.1134/S0040577925070128","DOIUrl":null,"url":null,"abstract":"<p> We show the existence and uniqueness of the solution with a moving internal transition layer in the initial boundary-value problem for the singularly perturbed parabolic reaction–diffusion equation in the case of a balance between reaction and diffusion. Using the Vasil’eva method of boundary functions, we construct an asymptotic approximation of the solution of the front form. We prove the existence and uniqueness theorem using the asymptotic method of Nefedov’s differential inequalities. The obtained results can be used to develop effective numerical algorithms for solving hard problems appearing in the theory of nonlinear heat conduction and in population dynamics. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 1","pages":"1257 - 1270"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Front motion in the reaction–diffusion problem in the case of a balance between reaction and diffusion\",\"authors\":\"A. O. Orlov,&nbsp;A. R. Makhmudov\",\"doi\":\"10.1134/S0040577925070128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We show the existence and uniqueness of the solution with a moving internal transition layer in the initial boundary-value problem for the singularly perturbed parabolic reaction–diffusion equation in the case of a balance between reaction and diffusion. Using the Vasil’eva method of boundary functions, we construct an asymptotic approximation of the solution of the front form. We prove the existence and uniqueness theorem using the asymptotic method of Nefedov’s differential inequalities. The obtained results can be used to develop effective numerical algorithms for solving hard problems appearing in the theory of nonlinear heat conduction and in population dynamics. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"224 1\",\"pages\":\"1257 - 1270\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925070128\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925070128","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在反应扩散平衡的情况下,给出了奇异摄动抛物型反应扩散方程初始边值问题具有移动内过渡层解的存在唯一性。利用边界函数的Vasil 'eva方法,构造了前形式解的渐近逼近。利用Nefedov微分不等式的渐近方法证明了该不等式的存在唯一性定理。所得结果可用于开发求解非线性热传导理论和种群动力学中出现的难题的有效数值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Front motion in the reaction–diffusion problem in the case of a balance between reaction and diffusion

We show the existence and uniqueness of the solution with a moving internal transition layer in the initial boundary-value problem for the singularly perturbed parabolic reaction–diffusion equation in the case of a balance between reaction and diffusion. Using the Vasil’eva method of boundary functions, we construct an asymptotic approximation of the solution of the front form. We prove the existence and uniqueness theorem using the asymptotic method of Nefedov’s differential inequalities. The obtained results can be used to develop effective numerical algorithms for solving hard problems appearing in the theory of nonlinear heat conduction and in population dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信