未折现不定视界mdp的离线极大极小q函数学习

IF 0.6 4区 数学 Q3 STATISTICS & PROBABILITY
Fengying Li, Yuqiang Li, Xianyi Wu, Wei Bai
{"title":"未折现不定视界mdp的离线极大极小q函数学习","authors":"Fengying Li,&nbsp;Yuqiang Li,&nbsp;Xianyi Wu,&nbsp;Wei Bai","doi":"10.1007/s10463-025-00924-1","DOIUrl":null,"url":null,"abstract":"<div><p>This work considers the offline evaluation problem for indefinite-horizon Markov Decision Processes. A minimax Q-function learning algorithm is proposed, which, instead of i.i.d. tuples <span>\\((s,a,s',r)\\)</span>, evaluates undiscounted expected return based by i.i.d. trajectories truncated at a given time step. The confidence error bounds are developed. Experiments using Open AI’s Cart Pole environment are employed to demonstrate the algorithm.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"77 4","pages":"535 - 562"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offline minimax Q-function learning for undiscounted indefinite-horizon MDPs\",\"authors\":\"Fengying Li,&nbsp;Yuqiang Li,&nbsp;Xianyi Wu,&nbsp;Wei Bai\",\"doi\":\"10.1007/s10463-025-00924-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work considers the offline evaluation problem for indefinite-horizon Markov Decision Processes. A minimax Q-function learning algorithm is proposed, which, instead of i.i.d. tuples <span>\\\\((s,a,s',r)\\\\)</span>, evaluates undiscounted expected return based by i.i.d. trajectories truncated at a given time step. The confidence error bounds are developed. Experiments using Open AI’s Cart Pole environment are employed to demonstrate the algorithm.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":\"77 4\",\"pages\":\"535 - 562\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-025-00924-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-025-00924-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了不定视界马尔可夫决策过程的离线评价问题。提出了一种极大极小q函数学习算法,该算法不使用i.i.d元组\((s,a,s',r)\),而是基于在给定时间步长截断的i.i.d轨迹来评估未贴现期望收益。给出了置信误差范围。利用Open AI的Cart Pole环境进行实验,对算法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Offline minimax Q-function learning for undiscounted indefinite-horizon MDPs

This work considers the offline evaluation problem for indefinite-horizon Markov Decision Processes. A minimax Q-function learning algorithm is proposed, which, instead of i.i.d. tuples \((s,a,s',r)\), evaluates undiscounted expected return based by i.i.d. trajectories truncated at a given time step. The confidence error bounds are developed. Experiments using Open AI’s Cart Pole environment are employed to demonstrate the algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信