{"title":"关于一些不属于拉马努金函数象的值","authors":"Akihiro Goto","doi":"10.1007/s00013-025-02139-5","DOIUrl":null,"url":null,"abstract":"<div><p>Lehmer conjectured that Ramanujan’s tau-function never vanishes. As a variation of this conjecture, it is proved that </p><div><div><span>$$\\begin{aligned} \\tau (n)\\ne \\pm \\ell , \\pm 2\\ell , \\pm 2\\ell ^2, \\end{aligned}$$</span></div></div><p>where <span>\\(\\ell <100\\)</span> is an odd prime, by Balakrishnan, Ono, Craig, Tsai, and many people. We prove that </p><div><div><span>$$\\begin{aligned} \\tau (n)\\ne \\pm \\ell , \\pm 2\\ell , \\pm 4\\ell , \\pm 8\\ell \\end{aligned}$$</span></div></div><p>for <span>\\(\\ell \\in L\\)</span>, where <i>L</i> is an explicit finite subset of odd primes less than 1000.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 2","pages":"157 - 172"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some values which do not belong to the image of Ramanujan’s tau-function\",\"authors\":\"Akihiro Goto\",\"doi\":\"10.1007/s00013-025-02139-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lehmer conjectured that Ramanujan’s tau-function never vanishes. As a variation of this conjecture, it is proved that </p><div><div><span>$$\\\\begin{aligned} \\\\tau (n)\\\\ne \\\\pm \\\\ell , \\\\pm 2\\\\ell , \\\\pm 2\\\\ell ^2, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\ell <100\\\\)</span> is an odd prime, by Balakrishnan, Ono, Craig, Tsai, and many people. We prove that </p><div><div><span>$$\\\\begin{aligned} \\\\tau (n)\\\\ne \\\\pm \\\\ell , \\\\pm 2\\\\ell , \\\\pm 4\\\\ell , \\\\pm 8\\\\ell \\\\end{aligned}$$</span></div></div><p>for <span>\\\\(\\\\ell \\\\in L\\\\)</span>, where <i>L</i> is an explicit finite subset of odd primes less than 1000.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 2\",\"pages\":\"157 - 172\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02139-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02139-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.