在离散势理论中求重力线性反问题的稳定近似解:一个局部版本

IF 1 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
I. E. Stepanova, I. I. Kolotov, A. N. Levashov, A. V. Gorbachev
{"title":"在离散势理论中求重力线性反问题的稳定近似解:一个局部版本","authors":"I. E. Stepanova,&nbsp;I. I. Kolotov,&nbsp;A. N. Levashov,&nbsp;A. V. Gorbachev","doi":"10.1134/S1069351325700089","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—We consider the algorithms for solving linear inverse problems of gravimetry in the framework of discrete potential theory in the local version. The main focus is on ways to find a discrete analog of the fundamental solution of the Laplace equation in Cartesian coordinates in a three-dimensional (3D) space. The grid analog of the fundamental solution of the Laplace equation is reconstructed at the nodes of a regular 3D grid using the matrix sweep method. A system of linear algebraic equations (SLAE) is then solved to find the distribution of gravitating masses at the nodes of the same grid from the values of the grid gravitational potential known on some subset of nodes.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"61 1","pages":"126 - 141"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Finding Stable Approximate Solutions of Linear Inverse Problems of Gravimetry in the Discrete Potential Theory: A Local Version\",\"authors\":\"I. E. Stepanova,&nbsp;I. I. Kolotov,&nbsp;A. N. Levashov,&nbsp;A. V. Gorbachev\",\"doi\":\"10.1134/S1069351325700089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—We consider the algorithms for solving linear inverse problems of gravimetry in the framework of discrete potential theory in the local version. The main focus is on ways to find a discrete analog of the fundamental solution of the Laplace equation in Cartesian coordinates in a three-dimensional (3D) space. The grid analog of the fundamental solution of the Laplace equation is reconstructed at the nodes of a regular 3D grid using the matrix sweep method. A system of linear algebraic equations (SLAE) is then solved to find the distribution of gravitating masses at the nodes of the same grid from the values of the grid gravitational potential known on some subset of nodes.</p>\",\"PeriodicalId\":602,\"journal\":{\"name\":\"Izvestiya, Physics of the Solid Earth\",\"volume\":\"61 1\",\"pages\":\"126 - 141\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya, Physics of the Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1069351325700089\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351325700089","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文在局部版本的离散势理论框架下,研究了求解重力测量线性逆问题的算法。主要的焦点是如何在三维(3D)空间中找到笛卡尔坐标下拉普拉斯方程基本解的离散模拟。利用矩阵扫描法在规则三维网格节点上重建了拉普拉斯方程基本解的网格模拟。然后求解线性代数方程组(SLAE),从已知的网格引力势值在某些节点子集上求出同一网格节点上的重力质量分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Finding Stable Approximate Solutions of Linear Inverse Problems of Gravimetry in the Discrete Potential Theory: A Local Version

On Finding Stable Approximate Solutions of Linear Inverse Problems of Gravimetry in the Discrete Potential Theory: A Local Version

Abstract—We consider the algorithms for solving linear inverse problems of gravimetry in the framework of discrete potential theory in the local version. The main focus is on ways to find a discrete analog of the fundamental solution of the Laplace equation in Cartesian coordinates in a three-dimensional (3D) space. The grid analog of the fundamental solution of the Laplace equation is reconstructed at the nodes of a regular 3D grid using the matrix sweep method. A system of linear algebraic equations (SLAE) is then solved to find the distribution of gravitating masses at the nodes of the same grid from the values of the grid gravitational potential known on some subset of nodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya, Physics of the Solid Earth
Izvestiya, Physics of the Solid Earth 地学-地球化学与地球物理
CiteScore
1.60
自引率
30.00%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信