Arshad Ali, Muhammad I. Kakar, Mohamed A. K. El-Ghali, Hafiz Ur Rehman, Iftikhar A. Abbasi, Mohamed Moustafa
{"title":"通过增强海水中岩石风化作用进行二氧化碳固存的实验研究:对沿海和开阔海洋环境中减缓气候变化战略的见解","authors":"Arshad Ali, Muhammad I. Kakar, Mohamed A. K. El-Ghali, Hafiz Ur Rehman, Iftikhar A. Abbasi, Mohamed Moustafa","doi":"10.1007/s11631-024-00735-w","DOIUrl":null,"url":null,"abstract":"<div><p>Enhanced weathering (EW) of ultramafic rocks from the Muslim Bagh Ophiolite, Pakistan, has been studied in laboratory experiments to explore carbon sequestration as a climate change mitigation strategy for coastal and open sea environments. The research focused on a cost-effective ex situ experiment to examine the effects of EW reaction pathways arising from the interactions among rock powder, seawater and CO<sub>2</sub>. The experimental filtrates from different milled peridotite samples exhibit a decrease in the Mg/Ca ratio as the specific surface area increases, which accelerates reaction rates. This suggests that the leached Mg from the original rock may have been consumed in the formation of brucite, serpentine and carbonates during EW. Similar reaction pathways are also responsible for the chemical alterations observed in amphibolite, albeit to varying degrees. On the other hand, the experimental residues showed an increase in loss on ignition compared to the original rock, indicating that EW has facilitated the incorporation of H<sub>2</sub>O and CO<sub>2</sub> into secondary mineral structures through various reaction pathways, leading to the formation of brucite, serpentine and carbonates. Thermal gravimetric analysis of the experimental residues confirms the presence of these minerals based on their decomposition temperatures. Additionally, XRD analysis identified a range of carbonates in the residues of both peridotite and amphibolite samples, validating the occurrence of carbonation reactions. SEM images reveal textural changes in both samples, supporting the formation of secondary minerals through EW, consistent with observations from the petrographic study of untreated samples. Control experiments on CO<sub>2</sub> absorption in seawater showed a decrease in pH, highlighting ocean acidification from increased CO<sub>2</sub> emissions. However, when rock powder was added to the seawater-CO<sub>2</sub> mixture, the pH increased. This suggests that the EW of ultramafic rock powders can sequester CO<sub>2</sub> while raising seawater pH through the formation of secondary minerals. This research could serve as an analog for EW applications, considering the worldwide abundance of ultramafic rocks and the availability of coastal and open ocean environments. However, further research is required to understand the behavior of other elements and their impacts on ocean chemistry in EW processes before applying CO<sub>2</sub> sequestration strategies.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 3","pages":"496 - 512"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental studies on CO2 sequestration via enhanced rock weathering in seawater: Insights for climate change mitigation strategies in coastal and open ocean environments\",\"authors\":\"Arshad Ali, Muhammad I. Kakar, Mohamed A. K. El-Ghali, Hafiz Ur Rehman, Iftikhar A. Abbasi, Mohamed Moustafa\",\"doi\":\"10.1007/s11631-024-00735-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhanced weathering (EW) of ultramafic rocks from the Muslim Bagh Ophiolite, Pakistan, has been studied in laboratory experiments to explore carbon sequestration as a climate change mitigation strategy for coastal and open sea environments. The research focused on a cost-effective ex situ experiment to examine the effects of EW reaction pathways arising from the interactions among rock powder, seawater and CO<sub>2</sub>. The experimental filtrates from different milled peridotite samples exhibit a decrease in the Mg/Ca ratio as the specific surface area increases, which accelerates reaction rates. This suggests that the leached Mg from the original rock may have been consumed in the formation of brucite, serpentine and carbonates during EW. Similar reaction pathways are also responsible for the chemical alterations observed in amphibolite, albeit to varying degrees. On the other hand, the experimental residues showed an increase in loss on ignition compared to the original rock, indicating that EW has facilitated the incorporation of H<sub>2</sub>O and CO<sub>2</sub> into secondary mineral structures through various reaction pathways, leading to the formation of brucite, serpentine and carbonates. Thermal gravimetric analysis of the experimental residues confirms the presence of these minerals based on their decomposition temperatures. Additionally, XRD analysis identified a range of carbonates in the residues of both peridotite and amphibolite samples, validating the occurrence of carbonation reactions. SEM images reveal textural changes in both samples, supporting the formation of secondary minerals through EW, consistent with observations from the petrographic study of untreated samples. Control experiments on CO<sub>2</sub> absorption in seawater showed a decrease in pH, highlighting ocean acidification from increased CO<sub>2</sub> emissions. However, when rock powder was added to the seawater-CO<sub>2</sub> mixture, the pH increased. This suggests that the EW of ultramafic rock powders can sequester CO<sub>2</sub> while raising seawater pH through the formation of secondary minerals. This research could serve as an analog for EW applications, considering the worldwide abundance of ultramafic rocks and the availability of coastal and open ocean environments. However, further research is required to understand the behavior of other elements and their impacts on ocean chemistry in EW processes before applying CO<sub>2</sub> sequestration strategies.</p></div>\",\"PeriodicalId\":7151,\"journal\":{\"name\":\"Acta Geochimica\",\"volume\":\"44 3\",\"pages\":\"496 - 512\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geochimica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11631-024-00735-w\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geochimica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11631-024-00735-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Experimental studies on CO2 sequestration via enhanced rock weathering in seawater: Insights for climate change mitigation strategies in coastal and open ocean environments
Enhanced weathering (EW) of ultramafic rocks from the Muslim Bagh Ophiolite, Pakistan, has been studied in laboratory experiments to explore carbon sequestration as a climate change mitigation strategy for coastal and open sea environments. The research focused on a cost-effective ex situ experiment to examine the effects of EW reaction pathways arising from the interactions among rock powder, seawater and CO2. The experimental filtrates from different milled peridotite samples exhibit a decrease in the Mg/Ca ratio as the specific surface area increases, which accelerates reaction rates. This suggests that the leached Mg from the original rock may have been consumed in the formation of brucite, serpentine and carbonates during EW. Similar reaction pathways are also responsible for the chemical alterations observed in amphibolite, albeit to varying degrees. On the other hand, the experimental residues showed an increase in loss on ignition compared to the original rock, indicating that EW has facilitated the incorporation of H2O and CO2 into secondary mineral structures through various reaction pathways, leading to the formation of brucite, serpentine and carbonates. Thermal gravimetric analysis of the experimental residues confirms the presence of these minerals based on their decomposition temperatures. Additionally, XRD analysis identified a range of carbonates in the residues of both peridotite and amphibolite samples, validating the occurrence of carbonation reactions. SEM images reveal textural changes in both samples, supporting the formation of secondary minerals through EW, consistent with observations from the petrographic study of untreated samples. Control experiments on CO2 absorption in seawater showed a decrease in pH, highlighting ocean acidification from increased CO2 emissions. However, when rock powder was added to the seawater-CO2 mixture, the pH increased. This suggests that the EW of ultramafic rock powders can sequester CO2 while raising seawater pH through the formation of secondary minerals. This research could serve as an analog for EW applications, considering the worldwide abundance of ultramafic rocks and the availability of coastal and open ocean environments. However, further research is required to understand the behavior of other elements and their impacts on ocean chemistry in EW processes before applying CO2 sequestration strategies.
期刊介绍:
Acta Geochimica serves as the international forum for essential research on geochemistry, the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth‘s crust, its oceans and the entire Solar System, as well as a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. The journal focuses on, but is not limited to the following aspects:
• Cosmochemistry
• Mantle Geochemistry
• Ore-deposit Geochemistry
• Organic Geochemistry
• Environmental Geochemistry
• Computational Geochemistry
• Isotope Geochemistry
• NanoGeochemistry
All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Acta Geochimica publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of geochemistry.