强拟不变态的自同构群

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Ameur Dhahri, Chul Ki Ko, Hyun Jae Yoo
{"title":"强拟不变态的自同构群","authors":"Ameur Dhahri,&nbsp;Chul Ki Ko,&nbsp;Hyun Jae Yoo","doi":"10.1007/s11005-025-01976-3","DOIUrl":null,"url":null,"abstract":"<div><p>For a <span>\\(*\\)</span>-automorphism group <i>G</i> on a von Neumann algebra, we study the <i>G</i>-quasi-invariant states and their properties. The <i>G</i>-quasi-invariance or <i>G</i>-strongly quasi-invariance is weaker than the <i>G</i>-invariance and has wide applications. We develop several properties for <i>G</i>-strongly quasi-invariant states. Many of them are the extensions of the already developed theories for <i>G</i>-invariant states. Among others, we consider the relationship between the group <i>G</i> and modular automorphism group, invariant subalgebras, ergodicity, modular theory, and abelian subalgebras. We provide with some examples to support the results.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group of automorphisms for strongly quasi-invariant states\",\"authors\":\"Ameur Dhahri,&nbsp;Chul Ki Ko,&nbsp;Hyun Jae Yoo\",\"doi\":\"10.1007/s11005-025-01976-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a <span>\\\\(*\\\\)</span>-automorphism group <i>G</i> on a von Neumann algebra, we study the <i>G</i>-quasi-invariant states and their properties. The <i>G</i>-quasi-invariance or <i>G</i>-strongly quasi-invariance is weaker than the <i>G</i>-invariance and has wide applications. We develop several properties for <i>G</i>-strongly quasi-invariant states. Many of them are the extensions of the already developed theories for <i>G</i>-invariant states. Among others, we consider the relationship between the group <i>G</i> and modular automorphism group, invariant subalgebras, ergodicity, modular theory, and abelian subalgebras. We provide with some examples to support the results.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01976-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01976-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于von Neumann代数上的\(*\) -自同构群G,研究了G的拟不变态及其性质。g -拟不变性或g -强拟不变性比g -不变性弱,具有广泛的应用。给出了g强拟不变态的几个性质。它们中的许多是已经发展的g不变态理论的扩展。其中,我们考虑了群G与模自同构群、不变子代数、遍历性、模理论和阿贝尔子代数之间的关系。我们提供了一些例子来支持结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group of automorphisms for strongly quasi-invariant states

For a \(*\)-automorphism group G on a von Neumann algebra, we study the G-quasi-invariant states and their properties. The G-quasi-invariance or G-strongly quasi-invariance is weaker than the G-invariance and has wide applications. We develop several properties for G-strongly quasi-invariant states. Many of them are the extensions of the already developed theories for G-invariant states. Among others, we consider the relationship between the group G and modular automorphism group, invariant subalgebras, ergodicity, modular theory, and abelian subalgebras. We provide with some examples to support the results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信