{"title":"解析k -半稳定性与局部过壁","authors":"Lars Martin Sektnan, Carl Tipler","doi":"10.1007/s10455-025-10011-6","DOIUrl":null,"url":null,"abstract":"<div><p>For a small polarised deformation of a constant scalar curvature Kähler manifold, under some cohomological vanishing conditions, we prove that <i>K</i>-polystability along nearby polarisations implies the existence of a constant scalar curvature Kähler metric. In this setting, we reduce <i>K</i>-polystability to the computation of the classical Futaki invariant on the cscK degeneration. Our result holds on specific families and provides local wall-crossing phenomena for the moduli of cscK manifolds when the polarisation varies.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"68 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-10011-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Analytic K-semistability and local wall-crossing\",\"authors\":\"Lars Martin Sektnan, Carl Tipler\",\"doi\":\"10.1007/s10455-025-10011-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a small polarised deformation of a constant scalar curvature Kähler manifold, under some cohomological vanishing conditions, we prove that <i>K</i>-polystability along nearby polarisations implies the existence of a constant scalar curvature Kähler metric. In this setting, we reduce <i>K</i>-polystability to the computation of the classical Futaki invariant on the cscK degeneration. Our result holds on specific families and provides local wall-crossing phenomena for the moduli of cscK manifolds when the polarisation varies.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"68 2\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-025-10011-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-10011-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-10011-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a small polarised deformation of a constant scalar curvature Kähler manifold, under some cohomological vanishing conditions, we prove that K-polystability along nearby polarisations implies the existence of a constant scalar curvature Kähler metric. In this setting, we reduce K-polystability to the computation of the classical Futaki invariant on the cscK degeneration. Our result holds on specific families and provides local wall-crossing phenomena for the moduli of cscK manifolds when the polarisation varies.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.