关于极大对称子代数

IF 0.5 4区 数学 Q3 MATHEMATICS
Alexander Kleshchev
{"title":"关于极大对称子代数","authors":"Alexander Kleshchev","doi":"10.1007/s00013-025-02132-y","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb {k}\\)</span> be a characteristic zero Dedekind domain, <i>S</i> be a <span>\\(\\mathbb {k}\\)</span>-algebra, and <span>\\(T\\subseteq S\\)</span> be a full rank subalgebra. Suppose the algebra <i>T</i> is symmetric. It is important to know when <i>T</i> is a <i>maximally symmetric subalgebra</i> of <i>S</i>, i.e., no <span>\\(\\mathbb {k}\\)</span>-subalgebra <i>C</i> satisfying <span>\\(T\\subsetneq C\\subseteq S\\)</span> is symmetric. In this note, we establish a useful sufficient condition for this using a notion of a quasi-unit of an algebra. This condition is used to obtain an old and a new result on maximal symmetricity for generalized Schur algebras corresponding to certain Brauer tree algebras. The old result was used in our work with Evseev on RoCK blocks of symmetric groups. The new result will be used in our forthcoming work on RoCK blocks of double covers of symmetric groups.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 2","pages":"123 - 132"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02132-y.pdf","citationCount":"0","resultStr":"{\"title\":\"On maximally symmetric subalgebras\",\"authors\":\"Alexander Kleshchev\",\"doi\":\"10.1007/s00013-025-02132-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathbb {k}\\\\)</span> be a characteristic zero Dedekind domain, <i>S</i> be a <span>\\\\(\\\\mathbb {k}\\\\)</span>-algebra, and <span>\\\\(T\\\\subseteq S\\\\)</span> be a full rank subalgebra. Suppose the algebra <i>T</i> is symmetric. It is important to know when <i>T</i> is a <i>maximally symmetric subalgebra</i> of <i>S</i>, i.e., no <span>\\\\(\\\\mathbb {k}\\\\)</span>-subalgebra <i>C</i> satisfying <span>\\\\(T\\\\subsetneq C\\\\subseteq S\\\\)</span> is symmetric. In this note, we establish a useful sufficient condition for this using a notion of a quasi-unit of an algebra. This condition is used to obtain an old and a new result on maximal symmetricity for generalized Schur algebras corresponding to certain Brauer tree algebras. The old result was used in our work with Evseev on RoCK blocks of symmetric groups. The new result will be used in our forthcoming work on RoCK blocks of double covers of symmetric groups.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 2\",\"pages\":\"123 - 132\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-025-02132-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02132-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02132-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(\mathbb {k}\)为特征零Dedekind域,S为\(\mathbb {k}\) -代数,\(T\subseteq S\)为满秩子代数。假设代数T是对称的。重要的是要知道什么时候T是S的最大对称子代数,即没有\(\mathbb {k}\) -子代数C满足\(T\subsetneq C\subseteq S\)是对称的。在本文中,我们利用代数的拟单位的概念,建立了一个有用的充分条件。利用这一条件,得到了对应于某些Brauer树代数的广义Schur代数的极大对称性的一个旧结果和一个新结果。旧的结果被用在我们和Evseev在对称群的岩石块上的工作中。新的结果将用于我们即将开展的关于对称群双盖岩石块的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On maximally symmetric subalgebras

Let \(\mathbb {k}\) be a characteristic zero Dedekind domain, S be a \(\mathbb {k}\)-algebra, and \(T\subseteq S\) be a full rank subalgebra. Suppose the algebra T is symmetric. It is important to know when T is a maximally symmetric subalgebra of S, i.e., no \(\mathbb {k}\)-subalgebra C satisfying \(T\subsetneq C\subseteq S\) is symmetric. In this note, we establish a useful sufficient condition for this using a notion of a quasi-unit of an algebra. This condition is used to obtain an old and a new result on maximal symmetricity for generalized Schur algebras corresponding to certain Brauer tree algebras. The old result was used in our work with Evseev on RoCK blocks of symmetric groups. The new result will be used in our forthcoming work on RoCK blocks of double covers of symmetric groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信