子覆盖图上Schrödinger算子的谱

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Natalia Saburova
{"title":"子覆盖图上Schrödinger算子的谱","authors":"Natalia Saburova","doi":"10.1007/s11005-025-01962-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider discrete Schrödinger operators with real periodic potentials on periodic graphs. The spectra of the operators consist of a finite number of bands. By \"rolling up\" a periodic graph along some appropriate directions we obtain periodic graphs of smaller dimensions called subcovering graphs. For example, rolling up a planar hexagonal lattice along different directions will lead to nanotubes with various chiralities. We describe connections between spectra of the Schrödinger operators on a periodic graph and its subcoverings. In particular, we provide a simple criterion for the subcovering graph to be isospectral to the original periodic graph. By isospectrality of periodic graphs we mean that the spectra of the Schrödinger operators on the graphs consist of the same number of bands and the corresponding bands coincide as sets. We also obtain asymptotics of the band edges of the Schrödinger operator on the subcovering graph as the \"chiral\" (roll up) vectors are long enough.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrum of Schrödinger operators on subcovering graphs\",\"authors\":\"Natalia Saburova\",\"doi\":\"10.1007/s11005-025-01962-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider discrete Schrödinger operators with real periodic potentials on periodic graphs. The spectra of the operators consist of a finite number of bands. By \\\"rolling up\\\" a periodic graph along some appropriate directions we obtain periodic graphs of smaller dimensions called subcovering graphs. For example, rolling up a planar hexagonal lattice along different directions will lead to nanotubes with various chiralities. We describe connections between spectra of the Schrödinger operators on a periodic graph and its subcoverings. In particular, we provide a simple criterion for the subcovering graph to be isospectral to the original periodic graph. By isospectrality of periodic graphs we mean that the spectra of the Schrödinger operators on the graphs consist of the same number of bands and the corresponding bands coincide as sets. We also obtain asymptotics of the band edges of the Schrödinger operator on the subcovering graph as the \\\"chiral\\\" (roll up) vectors are long enough.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01962-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01962-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

考虑周期图上具有实数周期势的离散Schrödinger算子。算符的光谱由有限个频带组成。通过沿着适当的方向“卷起”一个周期图,我们得到了称为子覆盖图的较小维数的周期图。例如,沿不同方向卷起一个平面六边形晶格,就会得到具有不同手性的纳米管。我们描述了周期图上Schrödinger算子的谱与它的子覆盖之间的联系。特别地,我们提供了子覆盖图与原周期图等谱的一个简单准则。周期图的等谱性是指周期图上Schrödinger算子的谱由相同数目的频带组成,相应的频带重合为集合。当“手性”(卷起)向量足够长时,我们还得到了子覆盖图上Schrödinger算子带边的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrum of Schrödinger operators on subcovering graphs

We consider discrete Schrödinger operators with real periodic potentials on periodic graphs. The spectra of the operators consist of a finite number of bands. By "rolling up" a periodic graph along some appropriate directions we obtain periodic graphs of smaller dimensions called subcovering graphs. For example, rolling up a planar hexagonal lattice along different directions will lead to nanotubes with various chiralities. We describe connections between spectra of the Schrödinger operators on a periodic graph and its subcoverings. In particular, we provide a simple criterion for the subcovering graph to be isospectral to the original periodic graph. By isospectrality of periodic graphs we mean that the spectra of the Schrödinger operators on the graphs consist of the same number of bands and the corresponding bands coincide as sets. We also obtain asymptotics of the band edges of the Schrödinger operator on the subcovering graph as the "chiral" (roll up) vectors are long enough.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信