半群优化下可比较对的相对体积

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Fabio Deelan Cunden, Jakub Czartowski, Giovanni Gramegna, A. de Oliveira Junior
{"title":"半群优化下可比较对的相对体积","authors":"Fabio Deelan Cunden,&nbsp;Jakub Czartowski,&nbsp;Giovanni Gramegna,&nbsp;A. de Oliveira Junior","doi":"10.1007/s11005-025-01968-3","DOIUrl":null,"url":null,"abstract":"<div><p>Any semigroup <span>\\(\\mathcal {S}\\)</span> of stochastic matrices induces a semigroup majorization relation <span>\\(\\prec ^{\\mathcal {S}}\\)</span> on the set <span>\\(\\Delta _{n-1}\\)</span> of probability <i>n</i>-vectors. Pick <i>X</i>, <i>Y</i> at random in <span>\\(\\Delta _{n-1}\\)</span>: what is the probability that <i>X</i> and <i>Y</i> are comparable under <span>\\(\\prec ^{\\mathcal {S}}\\)</span>? We review recent asymptotic (<span>\\(n\\rightarrow \\infty \\)</span>) results and conjectures in the case of <i>majorization</i> relation (when <span>\\(\\mathcal {S}\\)</span> is the set of doubly stochastic matrices), discuss natural generalisations, and prove a new asymptotic result in the case of majorization, and new exact finite-<i>n</i> formulae in the case of <i>UT-majorization</i> relation, i.e. when <span>\\(\\mathcal {S}\\)</span> is the set of upper-triangular stochastic matrices.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01968-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Relative volume of comparable pairs under semigroup majorization\",\"authors\":\"Fabio Deelan Cunden,&nbsp;Jakub Czartowski,&nbsp;Giovanni Gramegna,&nbsp;A. de Oliveira Junior\",\"doi\":\"10.1007/s11005-025-01968-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Any semigroup <span>\\\\(\\\\mathcal {S}\\\\)</span> of stochastic matrices induces a semigroup majorization relation <span>\\\\(\\\\prec ^{\\\\mathcal {S}}\\\\)</span> on the set <span>\\\\(\\\\Delta _{n-1}\\\\)</span> of probability <i>n</i>-vectors. Pick <i>X</i>, <i>Y</i> at random in <span>\\\\(\\\\Delta _{n-1}\\\\)</span>: what is the probability that <i>X</i> and <i>Y</i> are comparable under <span>\\\\(\\\\prec ^{\\\\mathcal {S}}\\\\)</span>? We review recent asymptotic (<span>\\\\(n\\\\rightarrow \\\\infty \\\\)</span>) results and conjectures in the case of <i>majorization</i> relation (when <span>\\\\(\\\\mathcal {S}\\\\)</span> is the set of doubly stochastic matrices), discuss natural generalisations, and prove a new asymptotic result in the case of majorization, and new exact finite-<i>n</i> formulae in the case of <i>UT-majorization</i> relation, i.e. when <span>\\\\(\\\\mathcal {S}\\\\)</span> is the set of upper-triangular stochastic matrices.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-025-01968-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01968-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01968-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

随机矩阵的任意半群\(\mathcal {S}\)在概率n向量集合\(\Delta _{n-1}\)上都推导出一个半群多数化关系\(\prec ^{\mathcal {S}}\)。在\(\Delta _{n-1}\)中随机选择X, Y:在\(\prec ^{\mathcal {S}}\)中X和Y具有可比性的概率是多少?我们回顾了最近关于多数化关系(当\(\mathcal {S}\)是双随机矩阵的集合)的渐近结果(\(n\rightarrow \infty \))和猜想,讨论了自然推广,并证明了关于多数化的一个新的渐近结果,以及关于t -多数化关系(即当\(\mathcal {S}\)是上三角随机矩阵的集合)的一个新的精确有限n的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative volume of comparable pairs under semigroup majorization

Any semigroup \(\mathcal {S}\) of stochastic matrices induces a semigroup majorization relation \(\prec ^{\mathcal {S}}\) on the set \(\Delta _{n-1}\) of probability n-vectors. Pick XY at random in \(\Delta _{n-1}\): what is the probability that X and Y are comparable under \(\prec ^{\mathcal {S}}\)? We review recent asymptotic (\(n\rightarrow \infty \)) results and conjectures in the case of majorization relation (when \(\mathcal {S}\) is the set of doubly stochastic matrices), discuss natural generalisations, and prove a new asymptotic result in the case of majorization, and new exact finite-n formulae in the case of UT-majorization relation, i.e. when \(\mathcal {S}\) is the set of upper-triangular stochastic matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信