区域大地水准面模拟中的h因子:不同情景的案例研究

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
C. J. Nyoka, A. H. M. Din, M. F. Pa’suya, P. A. Odera
{"title":"区域大地水准面模拟中的h因子:不同情景的案例研究","authors":"C. J. Nyoka,&nbsp;A. H. M. Din,&nbsp;M. F. Pa’suya,&nbsp;P. A. Odera","doi":"10.1007/s40328-025-00470-5","DOIUrl":null,"url":null,"abstract":"<div><p>In order to satisfy the Stokes’ solution to the Robin’s problem, the masses above the geoid are removed using an appropriate reduction scheme. This requires heights of the gravity station and at the integration or running points to be known with reasonable accuracy. The height data is used to compute the topographic, atmospheric, and downward continuation effects—essential elements of any geoid model—as well as to estimate free-air gravity anomalies. The height of the gravity station is usually tied to the local vertical network using standard heighting methods, ideally spirit levelling, while a Digital Elevation Model (DEM) is used to derive the heights at the integration points. In most developing countries, the gravity station heights are either not available or are unreliable for geoid modelling applications, since they were mostly observed to cater for the needs of geophysical exploration. By the end of the day, the geodesist has to accommodate the height information in the integral equations for computing topographical effects using the data available in the country. In this study, the different options for height information are investigated using the data available in Auvergne, central France. Geoid models are computed using different height data combinations to represent different scenarios which exist in different countries. Spherical one-dimensional (1D) Fourier transform is used to evaluate the Stokes’ integral in the framework of the Remove-Compute-Restore (RCR) technique. Results show that orthometric heights derived from a high-resolution Global Geopotential Model (GGM) with ellipsoidal heights may be as good as, if not better than, spirit-levelled heights, when used at the gravity station.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":"60 2","pages":"243 - 270"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The H-factor in regional geoid modelling: a case study with different scenarios\",\"authors\":\"C. J. Nyoka,&nbsp;A. H. M. Din,&nbsp;M. F. Pa’suya,&nbsp;P. A. Odera\",\"doi\":\"10.1007/s40328-025-00470-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to satisfy the Stokes’ solution to the Robin’s problem, the masses above the geoid are removed using an appropriate reduction scheme. This requires heights of the gravity station and at the integration or running points to be known with reasonable accuracy. The height data is used to compute the topographic, atmospheric, and downward continuation effects—essential elements of any geoid model—as well as to estimate free-air gravity anomalies. The height of the gravity station is usually tied to the local vertical network using standard heighting methods, ideally spirit levelling, while a Digital Elevation Model (DEM) is used to derive the heights at the integration points. In most developing countries, the gravity station heights are either not available or are unreliable for geoid modelling applications, since they were mostly observed to cater for the needs of geophysical exploration. By the end of the day, the geodesist has to accommodate the height information in the integral equations for computing topographical effects using the data available in the country. In this study, the different options for height information are investigated using the data available in Auvergne, central France. Geoid models are computed using different height data combinations to represent different scenarios which exist in different countries. Spherical one-dimensional (1D) Fourier transform is used to evaluate the Stokes’ integral in the framework of the Remove-Compute-Restore (RCR) technique. Results show that orthometric heights derived from a high-resolution Global Geopotential Model (GGM) with ellipsoidal heights may be as good as, if not better than, spirit-levelled heights, when used at the gravity station.</p></div>\",\"PeriodicalId\":48965,\"journal\":{\"name\":\"Acta Geodaetica et Geophysica\",\"volume\":\"60 2\",\"pages\":\"243 - 270\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodaetica et Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40328-025-00470-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-025-00470-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

为了满足罗宾问题的Stokes解,采用适当的缩减方案去除大地水准面上方的质量。这要求以合理的精度知道重力站的高度和在集成点或运行点的高度。高度数据用于计算地形、大气和向下延延效应——任何大地水准面模型的基本要素——以及估计自由空气重力异常。重力站的高度通常使用标准高程方法(理想情况下是水平仪)与当地垂直网相关联,而数字高程模型(DEM)则用于导出积分点的高度。在大多数发展中国家,重力站高度要么无法获得,要么不可靠,不能用于大地水准面模拟应用,因为观测这些高度主要是为了满足地球物理勘探的需要。在一天结束的时候,测地线师必须利用国内可用的数据将高度信息纳入计算地形效应的积分方程中。在这项研究中,使用法国中部奥弗涅的可用数据调查了不同的高度信息选项。大地水准面模型使用不同的高度数据组合来表示不同国家存在的不同情景。采用球面一维傅里叶变换在移除-计算-恢复(RCR)技术的框架下计算Stokes积分。结果表明,采用椭球高度的高分辨率全球位势模型(GGM)得到的正测高度,在重力站上使用时,即使不优于精神水平高度,也可以达到同样的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The H-factor in regional geoid modelling: a case study with different scenarios

In order to satisfy the Stokes’ solution to the Robin’s problem, the masses above the geoid are removed using an appropriate reduction scheme. This requires heights of the gravity station and at the integration or running points to be known with reasonable accuracy. The height data is used to compute the topographic, atmospheric, and downward continuation effects—essential elements of any geoid model—as well as to estimate free-air gravity anomalies. The height of the gravity station is usually tied to the local vertical network using standard heighting methods, ideally spirit levelling, while a Digital Elevation Model (DEM) is used to derive the heights at the integration points. In most developing countries, the gravity station heights are either not available or are unreliable for geoid modelling applications, since they were mostly observed to cater for the needs of geophysical exploration. By the end of the day, the geodesist has to accommodate the height information in the integral equations for computing topographical effects using the data available in the country. In this study, the different options for height information are investigated using the data available in Auvergne, central France. Geoid models are computed using different height data combinations to represent different scenarios which exist in different countries. Spherical one-dimensional (1D) Fourier transform is used to evaluate the Stokes’ integral in the framework of the Remove-Compute-Restore (RCR) technique. Results show that orthometric heights derived from a high-resolution Global Geopotential Model (GGM) with ellipsoidal heights may be as good as, if not better than, spirit-levelled heights, when used at the gravity station.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geodaetica et Geophysica
Acta Geodaetica et Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.10
自引率
7.10%
发文量
26
期刊介绍: The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信