基于改进的麻雀算法长短期记忆网络的电力系统超短期发电功率自适应预测方法

Q2 Energy
Peipei Yang, Zhidong Chen, Wen Tang, Zongyang Liu, Bingrui He
{"title":"基于改进的麻雀算法长短期记忆网络的电力系统超短期发电功率自适应预测方法","authors":"Peipei Yang,&nbsp;Zhidong Chen,&nbsp;Wen Tang,&nbsp;Zongyang Liu,&nbsp;Bingrui He","doi":"10.1186/s42162-025-00543-3","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve adaptive and accurate ultra-short-term power generation forecasting in power systems, this study proposes a novel prediction method combining Sparrow Search Algorithm (SSA) with Long Short-Term Memory (LSTM) networks. The methodology involves the following steps: (1) Collecting historical ultra-short-term power generation data from photovoltaic systems, where outlier detection and data cleaning are performed using horizontal processing methods; (2) Applying Pearson correlation analysis to identify key meteorological factors significantly influencing power output as feature inputs; (3) Developing an Adaptive Sparrow Search Algorithm (ASSA) by dynamically adjusting the quantities of discoverers and followers in traditional SSA; (4) Optimizing LSTM network parameters through ASSA to enhance prediction accuracy. The experimental results demonstrate superior performance with Root Mean Square Error (RMSE) values of 0.075, 0.088, and 0.089 for sunny, cloudy, and variable weather conditions respectively. The corresponding Mean Absolute Percentage Error (MAPE) values are 0.21 MW, 0.52 MW, and 0.13 MW, while Absolute Error (AE) values reach 0.17 MW, 0.46 MW, and 0.18 MW. These findings confirm the method’s effectiveness in achieving precise ultra-short-term power generation forecasting across diverse weather conditions.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00543-3","citationCount":"0","resultStr":"{\"title\":\"An adaptive prediction method for ultra-short-term generation power of power system based on the improved long- and short-term memory network of sparrow algorithm\",\"authors\":\"Peipei Yang,&nbsp;Zhidong Chen,&nbsp;Wen Tang,&nbsp;Zongyang Liu,&nbsp;Bingrui He\",\"doi\":\"10.1186/s42162-025-00543-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To achieve adaptive and accurate ultra-short-term power generation forecasting in power systems, this study proposes a novel prediction method combining Sparrow Search Algorithm (SSA) with Long Short-Term Memory (LSTM) networks. The methodology involves the following steps: (1) Collecting historical ultra-short-term power generation data from photovoltaic systems, where outlier detection and data cleaning are performed using horizontal processing methods; (2) Applying Pearson correlation analysis to identify key meteorological factors significantly influencing power output as feature inputs; (3) Developing an Adaptive Sparrow Search Algorithm (ASSA) by dynamically adjusting the quantities of discoverers and followers in traditional SSA; (4) Optimizing LSTM network parameters through ASSA to enhance prediction accuracy. The experimental results demonstrate superior performance with Root Mean Square Error (RMSE) values of 0.075, 0.088, and 0.089 for sunny, cloudy, and variable weather conditions respectively. The corresponding Mean Absolute Percentage Error (MAPE) values are 0.21 MW, 0.52 MW, and 0.13 MW, while Absolute Error (AE) values reach 0.17 MW, 0.46 MW, and 0.18 MW. These findings confirm the method’s effectiveness in achieving precise ultra-short-term power generation forecasting across diverse weather conditions.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00543-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00543-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00543-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

为了实现电力系统超短期发电量的自适应准确预测,提出了一种将麻雀搜索算法(SSA)与长短期记忆(LSTM)网络相结合的预测方法。该方法包括以下步骤:(1)收集光伏系统的超短期发电历史数据,使用水平处理方法进行异常值检测和数据清洗;(2)应用Pearson相关分析,识别对发电量有显著影响的关键气象因子作为特征输入;(3)通过动态调整传统SSA中发现者和追随者数量的自适应麻雀搜索算法(ASSA);(4)通过ASSA优化LSTM网络参数,提高预测精度。实验结果表明,该方法在晴天、多云和可变天气条件下的均方根误差(RMSE)分别为0.075、0.088和0.089。对应的平均绝对百分比误差(MAPE)值分别为0.21 MW、0.52 MW和0.13 MW,而绝对误差(AE)值分别为0.17 MW、0.46 MW和0.18 MW。这些发现证实了该方法在实现不同天气条件下精确的超短期发电预测方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive prediction method for ultra-short-term generation power of power system based on the improved long- and short-term memory network of sparrow algorithm

To achieve adaptive and accurate ultra-short-term power generation forecasting in power systems, this study proposes a novel prediction method combining Sparrow Search Algorithm (SSA) with Long Short-Term Memory (LSTM) networks. The methodology involves the following steps: (1) Collecting historical ultra-short-term power generation data from photovoltaic systems, where outlier detection and data cleaning are performed using horizontal processing methods; (2) Applying Pearson correlation analysis to identify key meteorological factors significantly influencing power output as feature inputs; (3) Developing an Adaptive Sparrow Search Algorithm (ASSA) by dynamically adjusting the quantities of discoverers and followers in traditional SSA; (4) Optimizing LSTM network parameters through ASSA to enhance prediction accuracy. The experimental results demonstrate superior performance with Root Mean Square Error (RMSE) values of 0.075, 0.088, and 0.089 for sunny, cloudy, and variable weather conditions respectively. The corresponding Mean Absolute Percentage Error (MAPE) values are 0.21 MW, 0.52 MW, and 0.13 MW, while Absolute Error (AE) values reach 0.17 MW, 0.46 MW, and 0.18 MW. These findings confirm the method’s effectiveness in achieving precise ultra-short-term power generation forecasting across diverse weather conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信