{"title":"分数阶规定曲率问题的无穷多冒泡解和非退化结果","authors":"Lixiu Duan, Qing Guo","doi":"10.1007/s10114-025-3086-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the following fractional prescribed curvature problem </p><div><div><span>$$(-\\Delta)^{s}u=K(y)u^{2_{s}^{*}-1}, \\quad u>0,\\,y \\in {\\mathbb R}^{N},$$</span></div><div>\n ((0.1))\n </div></div><p> where <span>\\(s \\in (0,\\, {1 \\over 2})\\)</span> for <i>N</i> = 3, <i>s</i> ∈ (0, 1) for <i>N</i> ≥ 4 and <span>\\(2_{s}^{*}={2N \\over N-2s}\\)</span> is the fractional critical Sobolev exponent, <i>K</i>(<i>y</i>) has a local maximum point in <i>r</i> ∈ (<i>r</i><sub>0</sub> − <i>δ</i>, <i>r</i><sub>0</sub> + <i>δ</i>). First, for any sufficient large <i>k</i>, we construct a 2<i>k</i> bubbling solution to (0.1) of some new type, which concentrates on an upper and lower surfaces of an oblate cylinder through the Lyapunov–Schmidt reduction method. Furthermore, a non-degeneracy result of the multi-bubbling solutions is proved by use of various Pohozaev identities, which is new in the study of the fractional problems.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 6","pages":"1531 - 1564"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely Many Bubbling Solutions and Non-Degeneracy Results to Fractional Prescribed Curvature Problems\",\"authors\":\"Lixiu Duan, Qing Guo\",\"doi\":\"10.1007/s10114-025-3086-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the following fractional prescribed curvature problem </p><div><div><span>$$(-\\\\Delta)^{s}u=K(y)u^{2_{s}^{*}-1}, \\\\quad u>0,\\\\,y \\\\in {\\\\mathbb R}^{N},$$</span></div><div>\\n ((0.1))\\n </div></div><p> where <span>\\\\(s \\\\in (0,\\\\, {1 \\\\over 2})\\\\)</span> for <i>N</i> = 3, <i>s</i> ∈ (0, 1) for <i>N</i> ≥ 4 and <span>\\\\(2_{s}^{*}={2N \\\\over N-2s}\\\\)</span> is the fractional critical Sobolev exponent, <i>K</i>(<i>y</i>) has a local maximum point in <i>r</i> ∈ (<i>r</i><sub>0</sub> − <i>δ</i>, <i>r</i><sub>0</sub> + <i>δ</i>). First, for any sufficient large <i>k</i>, we construct a 2<i>k</i> bubbling solution to (0.1) of some new type, which concentrates on an upper and lower surfaces of an oblate cylinder through the Lyapunov–Schmidt reduction method. Furthermore, a non-degeneracy result of the multi-bubbling solutions is proved by use of various Pohozaev identities, which is new in the study of the fractional problems.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 6\",\"pages\":\"1531 - 1564\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3086-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3086-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
where \(s \in (0,\, {1 \over 2})\) for N = 3, s ∈ (0, 1) for N ≥ 4 and \(2_{s}^{*}={2N \over N-2s}\) is the fractional critical Sobolev exponent, K(y) has a local maximum point in r ∈ (r0 − δ, r0 + δ). First, for any sufficient large k, we construct a 2k bubbling solution to (0.1) of some new type, which concentrates on an upper and lower surfaces of an oblate cylinder through the Lyapunov–Schmidt reduction method. Furthermore, a non-degeneracy result of the multi-bubbling solutions is proved by use of various Pohozaev identities, which is new in the study of the fractional problems.
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.