ρ−混合随机变量加权和最大值的完全收敛性和完全矩收敛性及其应用

IF 0.9 3区 数学 Q2 MATHEMATICS
Jinyu Zhou, Jigao Yan
{"title":"ρ−混合随机变量加权和最大值的完全收敛性和完全矩收敛性及其应用","authors":"Jinyu Zhou,&nbsp;Jigao Yan","doi":"10.1007/s10114-025-3031-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, complete convergence and complete moment convergence for maximal weighted sums of <i>ρ</i><sup>−</sup>-mixing random variables are investigated, and some sufficient conditions for the convergence are provided. The relationships among the weights of the partial sums, boundary function and weight function are in a sense revealed. Additionally, a Marcinkiewicz–Zygmund type strong law of large numbers for maximal weighted sums of <i>ρ</i><sup>−</sup>-mixing random variables is established. The results obtained extend the corresponding ones for random variables with independence structure and some dependence structures. As an application, the strong consistency for the tail-value-at-risk (TVaR) estimator in the financial and actuarial fields is established.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 6","pages":"1677 - 1702"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete Convergence and Complete Moment Convergence for Maximum of Weighted Sums of ρ−-mixing Random Variables and Its Application\",\"authors\":\"Jinyu Zhou,&nbsp;Jigao Yan\",\"doi\":\"10.1007/s10114-025-3031-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, complete convergence and complete moment convergence for maximal weighted sums of <i>ρ</i><sup>−</sup>-mixing random variables are investigated, and some sufficient conditions for the convergence are provided. The relationships among the weights of the partial sums, boundary function and weight function are in a sense revealed. Additionally, a Marcinkiewicz–Zygmund type strong law of large numbers for maximal weighted sums of <i>ρ</i><sup>−</sup>-mixing random variables is established. The results obtained extend the corresponding ones for random variables with independence structure and some dependence structures. As an application, the strong consistency for the tail-value-at-risk (TVaR) estimator in the financial and actuarial fields is established.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 6\",\"pages\":\"1677 - 1702\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3031-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3031-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了ρ−混合随机变量的最大加权和的完全收敛性和完全矩收敛性,并给出了收敛性的充分条件。在某种意义上揭示了部分和的权值、边界函数和权函数的权值之间的关系。此外,建立了ρ−混合随机变量最大加权和的Marcinkiewicz-Zygmund型强大数定律。所得结果推广了具有独立结构和某些依赖结构的随机变量的相应结果。作为应用,建立了尾部风险值(TVaR)估计量在金融和精算领域的强一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete Convergence and Complete Moment Convergence for Maximum of Weighted Sums of ρ−-mixing Random Variables and Its Application

In this paper, complete convergence and complete moment convergence for maximal weighted sums of ρ-mixing random variables are investigated, and some sufficient conditions for the convergence are provided. The relationships among the weights of the partial sums, boundary function and weight function are in a sense revealed. Additionally, a Marcinkiewicz–Zygmund type strong law of large numbers for maximal weighted sums of ρ-mixing random variables is established. The results obtained extend the corresponding ones for random variables with independence structure and some dependence structures. As an application, the strong consistency for the tail-value-at-risk (TVaR) estimator in the financial and actuarial fields is established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信