无限超越度域上的除法代数的属

IF 0.5 4区 数学 Q3 MATHEMATICS
Sergey V. Tikhonov
{"title":"无限超越度域上的除法代数的属","authors":"Sergey V. Tikhonov","doi":"10.1007/s00013-025-02131-z","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the finiteness of the genus of finite-dimensional division algebras over many infinitely generated fields. More precisely, let <i>K</i> be a finite field extension of a field which is a purely transcendental extension of infinite transcendence degree of some subfield. We show that if <span>\\({\\mathcal D}\\)</span> is a central division <i>K</i>-algebra, then <span>\\(\\textbf{gen}({\\mathcal D})\\)</span> consists of Brauer classes <span>\\([{\\mathcal D}']\\)</span> such that <span>\\([{\\mathcal D}]\\)</span> and <span>\\([{\\mathcal D}']\\)</span> generate the same subgroup of <span>\\(\\text {Br} (K)\\)</span>. In particular, the genus of any division <i>K</i>-algebra of exponent 2 is trivial. Note that the family of such fields is closed under finitely generated extensions. Moreover, if <span>\\(\\text {char}(K) \\ne 2\\)</span>, we prove that the genus of a simple algebraic group of type <span>\\(\\textrm{G}_2\\)</span> over such a field <i>K</i> is trivial.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 2","pages":"115 - 121"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genus of division algebras over fields with infinite transcendence degree\",\"authors\":\"Sergey V. Tikhonov\",\"doi\":\"10.1007/s00013-025-02131-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the finiteness of the genus of finite-dimensional division algebras over many infinitely generated fields. More precisely, let <i>K</i> be a finite field extension of a field which is a purely transcendental extension of infinite transcendence degree of some subfield. We show that if <span>\\\\({\\\\mathcal D}\\\\)</span> is a central division <i>K</i>-algebra, then <span>\\\\(\\\\textbf{gen}({\\\\mathcal D})\\\\)</span> consists of Brauer classes <span>\\\\([{\\\\mathcal D}']\\\\)</span> such that <span>\\\\([{\\\\mathcal D}]\\\\)</span> and <span>\\\\([{\\\\mathcal D}']\\\\)</span> generate the same subgroup of <span>\\\\(\\\\text {Br} (K)\\\\)</span>. In particular, the genus of any division <i>K</i>-algebra of exponent 2 is trivial. Note that the family of such fields is closed under finitely generated extensions. Moreover, if <span>\\\\(\\\\text {char}(K) \\\\ne 2\\\\)</span>, we prove that the genus of a simple algebraic group of type <span>\\\\(\\\\textrm{G}_2\\\\)</span> over such a field <i>K</i> is trivial.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 2\",\"pages\":\"115 - 121\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02131-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02131-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了无限生成域上有限维除法代数属的有限性。更确切地说,设K是一个域的有限域扩展,而这个域是某子域的无限超越度的纯超越扩展。我们证明,如果\({\mathcal D}\)是一个中心划分k代数,那么\(\textbf{gen}({\mathcal D})\)由Brauer类\([{\mathcal D}']\)组成,使得\([{\mathcal D}]\)和\([{\mathcal D}']\)生成\(\text {Br} (K)\)的相同子群。特别地,指数为2的任何除法k代数的属都是平凡的。注意,这样的字段族在有限生成的扩展下是封闭的。此外,如果\(\text {char}(K) \ne 2\),我们证明了在这样一个域K上,类型为\(\textrm{G}_2\)的简单代数群的属是平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genus of division algebras over fields with infinite transcendence degree

We prove the finiteness of the genus of finite-dimensional division algebras over many infinitely generated fields. More precisely, let K be a finite field extension of a field which is a purely transcendental extension of infinite transcendence degree of some subfield. We show that if \({\mathcal D}\) is a central division K-algebra, then \(\textbf{gen}({\mathcal D})\) consists of Brauer classes \([{\mathcal D}']\) such that \([{\mathcal D}]\) and \([{\mathcal D}']\) generate the same subgroup of \(\text {Br} (K)\). In particular, the genus of any division K-algebra of exponent 2 is trivial. Note that the family of such fields is closed under finitely generated extensions. Moreover, if \(\text {char}(K) \ne 2\), we prove that the genus of a simple algebraic group of type \(\textrm{G}_2\) over such a field K is trivial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信