连续芳纶纤维/不饱和聚酯树脂复合材料具有优异的界面性能和力学性能

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yan Zhang, Yinchun Hu, Kexin Chen, Zhibin Jin, Qi Lei, Yongcun Li, Chuanbo Cong, Qiong Zhou, Yingying Wang
{"title":"连续芳纶纤维/不饱和聚酯树脂复合材料具有优异的界面性能和力学性能","authors":"Yan Zhang,&nbsp;Yinchun Hu,&nbsp;Kexin Chen,&nbsp;Zhibin Jin,&nbsp;Qi Lei,&nbsp;Yongcun Li,&nbsp;Chuanbo Cong,&nbsp;Qiong Zhou,&nbsp;Yingying Wang","doi":"10.1007/s11706-025-0728-x","DOIUrl":null,"url":null,"abstract":"<div><p>The surface microstructure of continuous aramid fibers (AFs) is significant for AF/unsaturated polyester (UP) resin composites. The chemical modification of the AF surface is the key point to enhance mechanical properties of AF/UP composites. In this study, the polyethyleneimine (PEI)-polydopamine (PDA) coating was formed on the continuous AF surface via a one-step process. Morphologies and functional groups of PEI-PDA-coated AFs were studied. It was revealed that the interfacial bonding strength between PEI-PDA-AFs and the UP matrix was increased by 82.47% due to formation of the chemical bonding between amino groups on PEI and hydroxyl groups on UP. The tensile strength of the PEI-PDA-AF/UP composite reached 959.07 MPa, increased by 34.19% compared with that before modification. This study presents a simple and efficient method to prepare high-strength continuous AF/UP composites which could be used in engineering fields of deep-sea pipeline, aerospace, construction, military, safety, sports equipment, etc.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous aramid fiber/unsaturated polyester resin composites with excellent interfacial and mechanical properties\",\"authors\":\"Yan Zhang,&nbsp;Yinchun Hu,&nbsp;Kexin Chen,&nbsp;Zhibin Jin,&nbsp;Qi Lei,&nbsp;Yongcun Li,&nbsp;Chuanbo Cong,&nbsp;Qiong Zhou,&nbsp;Yingying Wang\",\"doi\":\"10.1007/s11706-025-0728-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The surface microstructure of continuous aramid fibers (AFs) is significant for AF/unsaturated polyester (UP) resin composites. The chemical modification of the AF surface is the key point to enhance mechanical properties of AF/UP composites. In this study, the polyethyleneimine (PEI)-polydopamine (PDA) coating was formed on the continuous AF surface via a one-step process. Morphologies and functional groups of PEI-PDA-coated AFs were studied. It was revealed that the interfacial bonding strength between PEI-PDA-AFs and the UP matrix was increased by 82.47% due to formation of the chemical bonding between amino groups on PEI and hydroxyl groups on UP. The tensile strength of the PEI-PDA-AF/UP composite reached 959.07 MPa, increased by 34.19% compared with that before modification. This study presents a simple and efficient method to prepare high-strength continuous AF/UP composites which could be used in engineering fields of deep-sea pipeline, aerospace, construction, military, safety, sports equipment, etc.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"19 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-025-0728-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-025-0728-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

连续芳纶纤维(AFs)的表面微观结构对AF/不饱和聚酯(UP)树脂复合材料具有重要意义。对AF/UP表面进行化学改性是提高AF/UP复合材料力学性能的关键。在本研究中,通过一步法在连续AF表面形成聚乙烯亚胺(PEI)-聚多巴胺(PDA)涂层。研究了pei - pda包被的AFs的形态和官能团。结果表明,PEI- pda - afs与UP基体的界面结合强度提高了82.47%,这是由于PEI上的氨基与UP上的羟基之间形成了化学键。PEI-PDA-AF/UP复合材料的抗拉强度达到959.07 MPa,比改性前提高了34.19%。本研究提出了一种简单高效的制备高强度连续AF/UP复合材料的方法,可用于深海管道、航空航天、建筑、军事、安全、体育器材等工程领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous aramid fiber/unsaturated polyester resin composites with excellent interfacial and mechanical properties

The surface microstructure of continuous aramid fibers (AFs) is significant for AF/unsaturated polyester (UP) resin composites. The chemical modification of the AF surface is the key point to enhance mechanical properties of AF/UP composites. In this study, the polyethyleneimine (PEI)-polydopamine (PDA) coating was formed on the continuous AF surface via a one-step process. Morphologies and functional groups of PEI-PDA-coated AFs were studied. It was revealed that the interfacial bonding strength between PEI-PDA-AFs and the UP matrix was increased by 82.47% due to formation of the chemical bonding between amino groups on PEI and hydroxyl groups on UP. The tensile strength of the PEI-PDA-AF/UP composite reached 959.07 MPa, increased by 34.19% compared with that before modification. This study presents a simple and efficient method to prepare high-strength continuous AF/UP composites which could be used in engineering fields of deep-sea pipeline, aerospace, construction, military, safety, sports equipment, etc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信