连续可变量子密钥分配与乘式重复非二进制LDPC码的有效协调

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Jesus Martinez-Mateo, David Elkouss
{"title":"连续可变量子密钥分配与乘式重复非二进制LDPC码的有效协调","authors":"Jesus Martinez-Mateo,&nbsp;David Elkouss","doi":"10.1140/epjqt/s40507-025-00376-9","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous variable quantum key distribution bears the promise of simple quantum key distribution directly compatible with commercial off the shelf equipment. However, for a long time its performance was hindered by the absence of good classical postprocessing capable of distilling secret-keys in the noisy regime. Advanced coding solutions in the past years have partially addressed this problem enabling record transmission distances of up to 165 km, and 206 km over ultra-low loss fiber. In this paper, we show that a very simple coding solution with a single code is sufficient to extract keys at all noise levels. This solution has performance competitive with prior results for all levels of noise, and we show that non-zero keys can be distilled up to a record distance of 192 km assuming the standard loss of a single-mode optical fiber, and 240 km over ultra-low loss fibers. Low-rate codes are constructed using multiplicatively repeated non-binary low-density parity-check codes over a finite field of characteristic two. This construction only makes use of a <span>\\((2, k)\\)</span>-regular non-binary low-density parity-check code as mother code, such that code design is in fact not required, thus trivializing the code construction procedure. The construction is also inherently rate-adaptive thereby allowing to easily create codes of any rate. Rate-adaptive codes are of special interest for the efficient reconciliation of errors over time or arbitrary varying channels, as is the case with quantum key distribution. In short, these codes are highly efficient when reconciling errors over a very noisy communication channel, and perform well even for short block-length codes. Finally, the proposed solution is known to be easily amenable to hardware implementations, thus addressing also the requirements for practical reconciliation in continuous variable quantum key distribution.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00376-9","citationCount":"0","resultStr":"{\"title\":\"Efficient reconciliation of continuous variable quantum key distribution with multiplicatively repeated non-binary LDPC codes\",\"authors\":\"Jesus Martinez-Mateo,&nbsp;David Elkouss\",\"doi\":\"10.1140/epjqt/s40507-025-00376-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Continuous variable quantum key distribution bears the promise of simple quantum key distribution directly compatible with commercial off the shelf equipment. However, for a long time its performance was hindered by the absence of good classical postprocessing capable of distilling secret-keys in the noisy regime. Advanced coding solutions in the past years have partially addressed this problem enabling record transmission distances of up to 165 km, and 206 km over ultra-low loss fiber. In this paper, we show that a very simple coding solution with a single code is sufficient to extract keys at all noise levels. This solution has performance competitive with prior results for all levels of noise, and we show that non-zero keys can be distilled up to a record distance of 192 km assuming the standard loss of a single-mode optical fiber, and 240 km over ultra-low loss fibers. Low-rate codes are constructed using multiplicatively repeated non-binary low-density parity-check codes over a finite field of characteristic two. This construction only makes use of a <span>\\\\((2, k)\\\\)</span>-regular non-binary low-density parity-check code as mother code, such that code design is in fact not required, thus trivializing the code construction procedure. The construction is also inherently rate-adaptive thereby allowing to easily create codes of any rate. Rate-adaptive codes are of special interest for the efficient reconciliation of errors over time or arbitrary varying channels, as is the case with quantum key distribution. In short, these codes are highly efficient when reconciling errors over a very noisy communication channel, and perform well even for short block-length codes. Finally, the proposed solution is known to be easily amenable to hardware implementations, thus addressing also the requirements for practical reconciliation in continuous variable quantum key distribution.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00376-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00376-9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00376-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

连续可变量子密钥分发有望实现与商用现货设备直接兼容的简单量子密钥分发。然而,长期以来,由于缺乏能够在噪声状态下提取密钥的良好经典后处理,其性能受到阻碍。在过去几年中,先进的编码解决方案已经部分解决了这一问题,使传输距离达到165公里,超低损耗光纤传输距离达到206公里。在本文中,我们证明了一个非常简单的编码解决方案,一个单一的代码是足以提取密钥在所有噪声水平。该解决方案在所有噪声水平下都具有与先前结果相竞争的性能,并且我们表明,假设单模光纤的标准损耗,非零密钥可以提取到192公里的记录距离,而在超低损耗光纤中可以提取到240公里。在特征为2的有限域上使用乘法重复的非二进制低密度奇偶校验码来构造低速率码。这种构造只使用\((2, k)\) -正则非二进制低密度奇偶校验代码作为母代码,因此实际上不需要代码设计,从而使代码构造过程变得琐碎。这种结构本身也是自适应的,因此可以很容易地创建任何速率的代码。速率自适应码对于随时间或任意变化信道的错误的有效协调特别感兴趣,就像量子密钥分发的情况一样。简而言之,当在非常嘈杂的通信信道上协调错误时,这些代码非常高效,即使对于短块长度的代码也表现良好。最后,所提出的解决方案易于硬件实现,因此也解决了连续可变量子密钥分发中实际协调的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient reconciliation of continuous variable quantum key distribution with multiplicatively repeated non-binary LDPC codes

Continuous variable quantum key distribution bears the promise of simple quantum key distribution directly compatible with commercial off the shelf equipment. However, for a long time its performance was hindered by the absence of good classical postprocessing capable of distilling secret-keys in the noisy regime. Advanced coding solutions in the past years have partially addressed this problem enabling record transmission distances of up to 165 km, and 206 km over ultra-low loss fiber. In this paper, we show that a very simple coding solution with a single code is sufficient to extract keys at all noise levels. This solution has performance competitive with prior results for all levels of noise, and we show that non-zero keys can be distilled up to a record distance of 192 km assuming the standard loss of a single-mode optical fiber, and 240 km over ultra-low loss fibers. Low-rate codes are constructed using multiplicatively repeated non-binary low-density parity-check codes over a finite field of characteristic two. This construction only makes use of a \((2, k)\)-regular non-binary low-density parity-check code as mother code, such that code design is in fact not required, thus trivializing the code construction procedure. The construction is also inherently rate-adaptive thereby allowing to easily create codes of any rate. Rate-adaptive codes are of special interest for the efficient reconciliation of errors over time or arbitrary varying channels, as is the case with quantum key distribution. In short, these codes are highly efficient when reconciling errors over a very noisy communication channel, and perform well even for short block-length codes. Finally, the proposed solution is known to be easily amenable to hardware implementations, thus addressing also the requirements for practical reconciliation in continuous variable quantum key distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信