Maryam Esmaeilzadeh, Joice Kaschuk, Hoang M. Nguyen, Emilia Palo, Yazan Al Haj, Jaana Vapaavuori, Kati Miettunen
{"title":"染料敏化太阳能电池光管理用纳米印迹醋酸纤维素结构","authors":"Maryam Esmaeilzadeh, Joice Kaschuk, Hoang M. Nguyen, Emilia Palo, Yazan Al Haj, Jaana Vapaavuori, Kati Miettunen","doi":"10.1007/s11706-025-0725-0","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced materials with surface patterning can improve light management in optoelectronic devices. In this work, we employed nanoimprinting lithography (NIL) using a hard polydimethylsiloxane (PDMS) mold to fabricate twodimensional periodically structured films from cellulose acetate (CA). This periodic structure was selected to scatter the light to increase its optical path. The mold features translated well to the patterned CA films, as shown by scanning electron microscopy and atomic force microscopy analyses. The films showed an average peak-to-peak distance of (750 ±40) nm and an average height of grooves of (130 ±7) nm. Optical characterization confirmed a high transparency (> 90%) in the studied 300–800 nm range. These patterned cellulose films were applied atop dye solar cells to enhance light harvesting and improve device efficiency. The application of these films increased the average short-circuit current density by 17% ±3% and efficiency by 18% ±2% of the solar devices. Our results underscore that the easy and accessible NIL method can help develop patterned cellulose films for facile light-management patterning for optoelectronic device technologies.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-imprinted cellulose acetate structures for light management of dye-sensitized solar cells\",\"authors\":\"Maryam Esmaeilzadeh, Joice Kaschuk, Hoang M. Nguyen, Emilia Palo, Yazan Al Haj, Jaana Vapaavuori, Kati Miettunen\",\"doi\":\"10.1007/s11706-025-0725-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advanced materials with surface patterning can improve light management in optoelectronic devices. In this work, we employed nanoimprinting lithography (NIL) using a hard polydimethylsiloxane (PDMS) mold to fabricate twodimensional periodically structured films from cellulose acetate (CA). This periodic structure was selected to scatter the light to increase its optical path. The mold features translated well to the patterned CA films, as shown by scanning electron microscopy and atomic force microscopy analyses. The films showed an average peak-to-peak distance of (750 ±40) nm and an average height of grooves of (130 ±7) nm. Optical characterization confirmed a high transparency (> 90%) in the studied 300–800 nm range. These patterned cellulose films were applied atop dye solar cells to enhance light harvesting and improve device efficiency. The application of these films increased the average short-circuit current density by 17% ±3% and efficiency by 18% ±2% of the solar devices. Our results underscore that the easy and accessible NIL method can help develop patterned cellulose films for facile light-management patterning for optoelectronic device technologies.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"19 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-025-0725-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-025-0725-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nano-imprinted cellulose acetate structures for light management of dye-sensitized solar cells
Advanced materials with surface patterning can improve light management in optoelectronic devices. In this work, we employed nanoimprinting lithography (NIL) using a hard polydimethylsiloxane (PDMS) mold to fabricate twodimensional periodically structured films from cellulose acetate (CA). This periodic structure was selected to scatter the light to increase its optical path. The mold features translated well to the patterned CA films, as shown by scanning electron microscopy and atomic force microscopy analyses. The films showed an average peak-to-peak distance of (750 ±40) nm and an average height of grooves of (130 ±7) nm. Optical characterization confirmed a high transparency (> 90%) in the studied 300–800 nm range. These patterned cellulose films were applied atop dye solar cells to enhance light harvesting and improve device efficiency. The application of these films increased the average short-circuit current density by 17% ±3% and efficiency by 18% ±2% of the solar devices. Our results underscore that the easy and accessible NIL method can help develop patterned cellulose films for facile light-management patterning for optoelectronic device technologies.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.