等抛物线法的数学基础

IF 0.58 Q3 Engineering
V. G. Panov
{"title":"等抛物线法的数学基础","authors":"V. G. Panov","doi":"10.1134/S1990478924040148","DOIUrl":null,"url":null,"abstract":"<p> More precise definitions of concepts and constructs used in biomedical sciences are\nproposed to analyze the joint action of factors using isobolograms. Formal definitions of concepts\nof zero interaction, scale-equivalent dose–response functions, and zero-interaction manifold are\ngiven. A general construction is proposed that formalizes the conditions of applicability and the\nbasic methods for analyzing the combined action using isoboles. Equations of zero-interaction\nmanifolds are derived both in the case of scale-equivalent and arbitrary dose–response functions.\n</p>","PeriodicalId":607,"journal":{"name":"Journal of Applied and Industrial Mathematics","volume":"18 4","pages":"800 - 811"},"PeriodicalIF":0.5800,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Foundations of the Isobolographic\\nMethod\",\"authors\":\"V. G. Panov\",\"doi\":\"10.1134/S1990478924040148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> More precise definitions of concepts and constructs used in biomedical sciences are\\nproposed to analyze the joint action of factors using isobolograms. Formal definitions of concepts\\nof zero interaction, scale-equivalent dose–response functions, and zero-interaction manifold are\\ngiven. A general construction is proposed that formalizes the conditions of applicability and the\\nbasic methods for analyzing the combined action using isoboles. Equations of zero-interaction\\nmanifolds are derived both in the case of scale-equivalent and arbitrary dose–response functions.\\n</p>\",\"PeriodicalId\":607,\"journal\":{\"name\":\"Journal of Applied and Industrial Mathematics\",\"volume\":\"18 4\",\"pages\":\"800 - 811\"},\"PeriodicalIF\":0.5800,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990478924040148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1990478924040148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

提出了生物医学科学中使用的概念和结构的更精确的定义,以使用等线图分析因素的联合作用。给出了零相互作用、尺度等效剂量响应函数和零相互作用流形概念的形式化定义。提出了一种一般结构,形式化了用等螺线分析联合作用的适用条件和基本方法。在尺度等效和任意剂量响应函数的情况下,导出了零相互作用流形的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Foundations of the Isobolographic Method

More precise definitions of concepts and constructs used in biomedical sciences are proposed to analyze the joint action of factors using isobolograms. Formal definitions of concepts of zero interaction, scale-equivalent dose–response functions, and zero-interaction manifold are given. A general construction is proposed that formalizes the conditions of applicability and the basic methods for analyzing the combined action using isoboles. Equations of zero-interaction manifolds are derived both in the case of scale-equivalent and arbitrary dose–response functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied and Industrial Mathematics
Journal of Applied and Industrial Mathematics Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
16
期刊介绍: Journal of Applied and Industrial Mathematics  is a journal that publishes original and review articles containing theoretical results and those of interest for applications in various branches of industry. The journal topics include the qualitative theory of differential equations in application to mechanics, physics, chemistry, biology, technical and natural processes; mathematical modeling in mechanics, physics, engineering, chemistry, biology, ecology, medicine, etc.; control theory; discrete optimization; discrete structures and extremum problems; combinatorics; control and reliability of discrete circuits; mathematical programming; mathematical models and methods for making optimal decisions; models of theory of scheduling, location and replacement of equipment; modeling the control processes; development and analysis of algorithms; synthesis and complexity of control systems; automata theory; graph theory; game theory and its applications; coding theory; scheduling theory; and theory of circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信