S. Sutar, S. K. Rout, J. R. Senapati, K. K. Muduli
{"title":"空间供热用太阳能空气加热器的数值研究","authors":"S. Sutar, S. K. Rout, J. R. Senapati, K. K. Muduli","doi":"10.3103/S0003701X24602151","DOIUrl":null,"url":null,"abstract":"<p>Solar power represents a clean and sustainable energy option that boasts widespread accessibility and the potential to drive the establishment of more sustainable systems in the times ahead. The use of solar energy for the use of draying of food, crops, space heating and air ventilation can be consented by a unique device is known as Solar Air Heater (SAH). The utilization of solar energy for activities such as food drying, crop cultivation, space heating, and air ventilation can be facilitated by a unique device known as a SAH. In the present investigation, a compressive investigation of a SAH with right triangular ribs attached to the absorber plate of various orientation with transverse pattern to the flow, investigated numerically. The orientations of the right triangle-shaped ribs are presented individually. Commercially available CFD simulation software, Ansys Fluent, is utilized to solve the equations governing mass, momentum, and energy. The absorber plate is upheld at a heat flux level of 1000 W/m<sup>2</sup>. The effects of various factors on the performance of SAH, such as the inlet velocity of airflow and rib parameters (pitch and height), are examined. The research investigation includes a diverse set of Reynolds numbers, ranging from 3400 to 19 000. Additionally, the rib pitch ratio varies within the range of 7.33 to 20.66. The discussion has covered the pressure drop attributed to the existence of ribs. To elucidate the fluid flow’s physics, temperature, pressure, and velocity contours are presented. Significant improvement is observed, with an optimized case featuring a rib roughness pitch of 7.33 found for the SAH with triangular ribs, resulting in a Thermal Enhancement Ratio (TER) of 1.89. Non-linear regression analysis has been employed to derive the connections between the Nu and friction factor, demonstrating an accuracy within a 6% error margin.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":"60 5","pages":"708 - 726"},"PeriodicalIF":1.2040,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of Solar Air Heater for Space Heating Application\",\"authors\":\"S. Sutar, S. K. Rout, J. R. Senapati, K. K. Muduli\",\"doi\":\"10.3103/S0003701X24602151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solar power represents a clean and sustainable energy option that boasts widespread accessibility and the potential to drive the establishment of more sustainable systems in the times ahead. The use of solar energy for the use of draying of food, crops, space heating and air ventilation can be consented by a unique device is known as Solar Air Heater (SAH). The utilization of solar energy for activities such as food drying, crop cultivation, space heating, and air ventilation can be facilitated by a unique device known as a SAH. In the present investigation, a compressive investigation of a SAH with right triangular ribs attached to the absorber plate of various orientation with transverse pattern to the flow, investigated numerically. The orientations of the right triangle-shaped ribs are presented individually. Commercially available CFD simulation software, Ansys Fluent, is utilized to solve the equations governing mass, momentum, and energy. The absorber plate is upheld at a heat flux level of 1000 W/m<sup>2</sup>. The effects of various factors on the performance of SAH, such as the inlet velocity of airflow and rib parameters (pitch and height), are examined. The research investigation includes a diverse set of Reynolds numbers, ranging from 3400 to 19 000. Additionally, the rib pitch ratio varies within the range of 7.33 to 20.66. The discussion has covered the pressure drop attributed to the existence of ribs. To elucidate the fluid flow’s physics, temperature, pressure, and velocity contours are presented. Significant improvement is observed, with an optimized case featuring a rib roughness pitch of 7.33 found for the SAH with triangular ribs, resulting in a Thermal Enhancement Ratio (TER) of 1.89. Non-linear regression analysis has been employed to derive the connections between the Nu and friction factor, demonstrating an accuracy within a 6% error margin.</p>\",\"PeriodicalId\":475,\"journal\":{\"name\":\"Applied Solar Energy\",\"volume\":\"60 5\",\"pages\":\"708 - 726\"},\"PeriodicalIF\":1.2040,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Solar Energy\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0003701X24602151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X24602151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Numerical Investigation of Solar Air Heater for Space Heating Application
Solar power represents a clean and sustainable energy option that boasts widespread accessibility and the potential to drive the establishment of more sustainable systems in the times ahead. The use of solar energy for the use of draying of food, crops, space heating and air ventilation can be consented by a unique device is known as Solar Air Heater (SAH). The utilization of solar energy for activities such as food drying, crop cultivation, space heating, and air ventilation can be facilitated by a unique device known as a SAH. In the present investigation, a compressive investigation of a SAH with right triangular ribs attached to the absorber plate of various orientation with transverse pattern to the flow, investigated numerically. The orientations of the right triangle-shaped ribs are presented individually. Commercially available CFD simulation software, Ansys Fluent, is utilized to solve the equations governing mass, momentum, and energy. The absorber plate is upheld at a heat flux level of 1000 W/m2. The effects of various factors on the performance of SAH, such as the inlet velocity of airflow and rib parameters (pitch and height), are examined. The research investigation includes a diverse set of Reynolds numbers, ranging from 3400 to 19 000. Additionally, the rib pitch ratio varies within the range of 7.33 to 20.66. The discussion has covered the pressure drop attributed to the existence of ribs. To elucidate the fluid flow’s physics, temperature, pressure, and velocity contours are presented. Significant improvement is observed, with an optimized case featuring a rib roughness pitch of 7.33 found for the SAH with triangular ribs, resulting in a Thermal Enhancement Ratio (TER) of 1.89. Non-linear regression analysis has been employed to derive the connections between the Nu and friction factor, demonstrating an accuracy within a 6% error margin.
期刊介绍:
Applied Solar Energy is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.