量子计算在空间中的应用:选择性回顾与展望

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Pietro Torta, Rebecca Casati, Stefano Bruni, Antonio Mandarino, Enrico Prati
{"title":"量子计算在空间中的应用:选择性回顾与展望","authors":"Pietro Torta,&nbsp;Rebecca Casati,&nbsp;Stefano Bruni,&nbsp;Antonio Mandarino,&nbsp;Enrico Prati","doi":"10.1140/epjqt/s40507-025-00369-8","DOIUrl":null,"url":null,"abstract":"<div><p>Space science and technology are among the most challenging and strategic fields in which quantum computing promises to have a pervasive and long-lasting impact. We provide an overview of selected published works reporting the application of quantum computing to space science and technology. Our systematic analysis identifies three major classes of problems that have been approached with quantum computing. The first category includes optimization tasks, often cast into Quadratic Unconstrained Binary Optimization and solved using quantum annealing, with scheduling problems serving as a notable example. A second class comprises learning tasks, such as image classification in Earth Observation, often tackled with gate-based hybrid quantum-classical computation, namely with Quantum Machine Learning concepts and tools. Finally, integrating quantum computing with other quantum technologies may lead to new disruptive technologies, for instance, the creation of a quantum satellite internet constellation and distributed quantum computing. We organize our exposition by providing a critical analysis of the main challenges and methods at the core of different quantum computing paradigms and algorithms, which are often fundamentally similar across different domains of application in the space sector and beyond.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00369-8","citationCount":"0","resultStr":"{\"title\":\"Quantum computing for space applications: a selective review and perspectives\",\"authors\":\"Pietro Torta,&nbsp;Rebecca Casati,&nbsp;Stefano Bruni,&nbsp;Antonio Mandarino,&nbsp;Enrico Prati\",\"doi\":\"10.1140/epjqt/s40507-025-00369-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Space science and technology are among the most challenging and strategic fields in which quantum computing promises to have a pervasive and long-lasting impact. We provide an overview of selected published works reporting the application of quantum computing to space science and technology. Our systematic analysis identifies three major classes of problems that have been approached with quantum computing. The first category includes optimization tasks, often cast into Quadratic Unconstrained Binary Optimization and solved using quantum annealing, with scheduling problems serving as a notable example. A second class comprises learning tasks, such as image classification in Earth Observation, often tackled with gate-based hybrid quantum-classical computation, namely with Quantum Machine Learning concepts and tools. Finally, integrating quantum computing with other quantum technologies may lead to new disruptive technologies, for instance, the creation of a quantum satellite internet constellation and distributed quantum computing. We organize our exposition by providing a critical analysis of the main challenges and methods at the core of different quantum computing paradigms and algorithms, which are often fundamentally similar across different domains of application in the space sector and beyond.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00369-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00369-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00369-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

空间科学和技术是量子计算有望产生普遍和持久影响的最具挑战性和最具战略性的领域之一。我们提供了一个概述,报告量子计算在空间科学和技术中的应用已发表的作品。我们的系统分析确定了用量子计算解决的三大类问题。第一类包括优化任务,通常被转化为二次无约束二进制优化,并使用量子退火来解决,调度问题是一个显著的例子。第二类包括学习任务,例如地球观测中的图像分类,通常使用基于门的混合量子经典计算来解决,即使用量子机器学习概念和工具。最后,将量子计算与其他量子技术相结合可能会产生新的颠覆性技术,例如创建量子卫星互联网星座和分布式量子计算。我们通过提供对不同量子计算范式和算法核心的主要挑战和方法的批判性分析来组织我们的博览会,这些范式和算法通常在空间部门及其他领域的不同应用领域基本相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum computing for space applications: a selective review and perspectives

Space science and technology are among the most challenging and strategic fields in which quantum computing promises to have a pervasive and long-lasting impact. We provide an overview of selected published works reporting the application of quantum computing to space science and technology. Our systematic analysis identifies three major classes of problems that have been approached with quantum computing. The first category includes optimization tasks, often cast into Quadratic Unconstrained Binary Optimization and solved using quantum annealing, with scheduling problems serving as a notable example. A second class comprises learning tasks, such as image classification in Earth Observation, often tackled with gate-based hybrid quantum-classical computation, namely with Quantum Machine Learning concepts and tools. Finally, integrating quantum computing with other quantum technologies may lead to new disruptive technologies, for instance, the creation of a quantum satellite internet constellation and distributed quantum computing. We organize our exposition by providing a critical analysis of the main challenges and methods at the core of different quantum computing paradigms and algorithms, which are often fundamentally similar across different domains of application in the space sector and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信