Jorge Benjamín Diaz-López, Diana De la Cruz-Gumeta, Gabriela Alvarado-Arguello, Oscar Rico-Domínguez, Evelyn Valdez-Rodríguez, Karina Hernández-Ovalle, María Celina Luján-Hidalgo, Rosa Isela Cruz-Rodríguez, Rocío Meza-Gordillo
{"title":"利用豚鼠兔合成纳米银颗粒的优化。残渣提取物及其对铜绿假单胞菌的抑菌活性","authors":"Jorge Benjamín Diaz-López, Diana De la Cruz-Gumeta, Gabriela Alvarado-Arguello, Oscar Rico-Domínguez, Evelyn Valdez-Rodríguez, Karina Hernández-Ovalle, María Celina Luján-Hidalgo, Rosa Isela Cruz-Rodríguez, Rocío Meza-Gordillo","doi":"10.1186/s40712-025-00305-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the green synthesis of silver nanoparticles (Ag NPs) using oil palm (<i>Elaeis guineensis</i>) residue as a reducing agent. The synthesis was optimized by analyzing the effects of pH, silver nitrate (AgNO<sub>3</sub>) concentration, and extract-to-AgNO<sub>3</sub> ratios using a Taguchi L9 design. The highest yield theorist (72%) was achieved under the conditions of pH 10, 100 mM AgNO<sub>3</sub> concentration, and a 2:3 extract-to-AgNO<sub>3</sub> ratio. The synthesized Ag-NPs were characterized through UV–Vis (400–450 nm), Fourier-transform infrared spectroscopy (FT-IR, 1370 cm<sup>-1</sup>, attributed to the nitro group), dynamic light scattering (DLS, 10.07 nm average particle size with a hydrodynamic diameter (Dh) of 235.82 nm in a neutral pH), zeta potential (− 18.33 mV), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Antimicrobial testing against <i>Pseudomonas aeruginosa</i> revealed antibacterial activity, making these nanoparticles a promising alternative to traditional antibiotics.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00305-9","citationCount":"0","resultStr":"{\"title\":\"Optimization of silver nanoparticles synthesis using Elaeis guineensis Jacq. residue extract and their antibacterial activity against Pseudomonas aeruginosa\",\"authors\":\"Jorge Benjamín Diaz-López, Diana De la Cruz-Gumeta, Gabriela Alvarado-Arguello, Oscar Rico-Domínguez, Evelyn Valdez-Rodríguez, Karina Hernández-Ovalle, María Celina Luján-Hidalgo, Rosa Isela Cruz-Rodríguez, Rocío Meza-Gordillo\",\"doi\":\"10.1186/s40712-025-00305-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the green synthesis of silver nanoparticles (Ag NPs) using oil palm (<i>Elaeis guineensis</i>) residue as a reducing agent. The synthesis was optimized by analyzing the effects of pH, silver nitrate (AgNO<sub>3</sub>) concentration, and extract-to-AgNO<sub>3</sub> ratios using a Taguchi L9 design. The highest yield theorist (72%) was achieved under the conditions of pH 10, 100 mM AgNO<sub>3</sub> concentration, and a 2:3 extract-to-AgNO<sub>3</sub> ratio. The synthesized Ag-NPs were characterized through UV–Vis (400–450 nm), Fourier-transform infrared spectroscopy (FT-IR, 1370 cm<sup>-1</sup>, attributed to the nitro group), dynamic light scattering (DLS, 10.07 nm average particle size with a hydrodynamic diameter (Dh) of 235.82 nm in a neutral pH), zeta potential (− 18.33 mV), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Antimicrobial testing against <i>Pseudomonas aeruginosa</i> revealed antibacterial activity, making these nanoparticles a promising alternative to traditional antibiotics.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00305-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-025-00305-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00305-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of silver nanoparticles synthesis using Elaeis guineensis Jacq. residue extract and their antibacterial activity against Pseudomonas aeruginosa
This study explores the green synthesis of silver nanoparticles (Ag NPs) using oil palm (Elaeis guineensis) residue as a reducing agent. The synthesis was optimized by analyzing the effects of pH, silver nitrate (AgNO3) concentration, and extract-to-AgNO3 ratios using a Taguchi L9 design. The highest yield theorist (72%) was achieved under the conditions of pH 10, 100 mM AgNO3 concentration, and a 2:3 extract-to-AgNO3 ratio. The synthesized Ag-NPs were characterized through UV–Vis (400–450 nm), Fourier-transform infrared spectroscopy (FT-IR, 1370 cm-1, attributed to the nitro group), dynamic light scattering (DLS, 10.07 nm average particle size with a hydrodynamic diameter (Dh) of 235.82 nm in a neutral pH), zeta potential (− 18.33 mV), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Antimicrobial testing against Pseudomonas aeruginosa revealed antibacterial activity, making these nanoparticles a promising alternative to traditional antibiotics.