一维各向异性自旋-1/2链的多体局域化性质

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Taotao Hu, Yuting Li, Jiameng Hong, Dongyan Guo, Xiaodan Li, Kangning Chen
{"title":"一维各向异性自旋-1/2链的多体局域化性质","authors":"Taotao Hu,&nbsp;Yuting Li,&nbsp;Jiameng Hong,&nbsp;Dongyan Guo,&nbsp;Xiaodan Li,&nbsp;Kangning Chen","doi":"10.1007/s11128-025-04860-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we theoretically investigate the many-body localization (MBL) properties of one-dimensional anisotropic spin-1/2 chains by using the exact matrix diagonalization method. Starting from the Ising spin-1/2 chain, we introduce different forms of external fields and spin coupling interactions, and construct three distinct anisotropic spin-1/2 chain models. The influence of these interactions on the MBL phase transition is systematically explored. We first analyze the eigenstate properties by computing the excited-state fidelity. The results show that MBL phase transitions occur in all three models, and that both the anisotropy parameter and the finite system size significantly affect the critical disorder strength of the transition. Moreover, we calculated the bipartite entanglement entropy of the system, and the critical points determined by the intersection of curves for different system sizes are basically consistent with those obtained from the excited-state fidelity. Then, the dynamical characteristics of the systems are studied through the time evolution of diagonal entropy, local magnetization, and fidelity. These observations further confirm the occurrence of the MBL phase transition and allow for a clear distinction between the ergodic (thermal) phase and the many-body localized phase. Finally, to examine the effect of additional interactions on the transition, we incorporate Dzyaloshinskii–Moriya (DM) interactions into the three models. The results demonstrate that the MBL phase transition still occurs in the presence of DM interactions. However, the anisotropy parameter and finite system size significantly affect the critical disorder strength. Moreover, the critical behavior is somewhat suppressed, indicating that DM interactions tend to inhibit the onset of localization.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Many-body localization properties of one-dimensional anisotropic spin-1/2 chains\",\"authors\":\"Taotao Hu,&nbsp;Yuting Li,&nbsp;Jiameng Hong,&nbsp;Dongyan Guo,&nbsp;Xiaodan Li,&nbsp;Kangning Chen\",\"doi\":\"10.1007/s11128-025-04860-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we theoretically investigate the many-body localization (MBL) properties of one-dimensional anisotropic spin-1/2 chains by using the exact matrix diagonalization method. Starting from the Ising spin-1/2 chain, we introduce different forms of external fields and spin coupling interactions, and construct three distinct anisotropic spin-1/2 chain models. The influence of these interactions on the MBL phase transition is systematically explored. We first analyze the eigenstate properties by computing the excited-state fidelity. The results show that MBL phase transitions occur in all three models, and that both the anisotropy parameter and the finite system size significantly affect the critical disorder strength of the transition. Moreover, we calculated the bipartite entanglement entropy of the system, and the critical points determined by the intersection of curves for different system sizes are basically consistent with those obtained from the excited-state fidelity. Then, the dynamical characteristics of the systems are studied through the time evolution of diagonal entropy, local magnetization, and fidelity. These observations further confirm the occurrence of the MBL phase transition and allow for a clear distinction between the ergodic (thermal) phase and the many-body localized phase. Finally, to examine the effect of additional interactions on the transition, we incorporate Dzyaloshinskii–Moriya (DM) interactions into the three models. The results demonstrate that the MBL phase transition still occurs in the presence of DM interactions. However, the anisotropy parameter and finite system size significantly affect the critical disorder strength. Moreover, the critical behavior is somewhat suppressed, indicating that DM interactions tend to inhibit the onset of localization.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 8\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04860-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04860-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文利用精确矩阵对角化方法,从理论上研究了一维各向异性自旋-1/2链的多体局部化特性。从Ising自旋-1/2链出发,引入不同形式的外场和自旋耦合相互作用,构建了三种不同的各向异性自旋-1/2链模型。系统地探讨了这些相互作用对MBL相变的影响。我们首先通过计算激发态保真度来分析本征态的性质。结果表明,三种模型均发生了MBL相变,各向异性参数和有限系统尺寸对相变的临界无序强度有显著影响。此外,我们计算了系统的二部纠缠熵,不同系统尺寸下由曲线相交确定的临界点与激发态保真度计算得到的临界点基本一致。然后,通过对角熵、局部磁化强度和保真度的时间演化研究了系统的动力学特性。这些观察结果进一步证实了MBL相变的发生,并允许在遍历(热)相和多体局部相之间进行明确区分。最后,为了检验额外相互作用对过渡的影响,我们将Dzyaloshinskii-Moriya (DM)相互作用纳入了三个模型。结果表明,在DM相互作用下,MBL相变仍然发生。然而,各向异性参数和有限系统尺寸对临界失序强度有显著影响。此外,关键行为在一定程度上受到抑制,表明DM相互作用倾向于抑制定位的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Many-body localization properties of one-dimensional anisotropic spin-1/2 chains

In this paper, we theoretically investigate the many-body localization (MBL) properties of one-dimensional anisotropic spin-1/2 chains by using the exact matrix diagonalization method. Starting from the Ising spin-1/2 chain, we introduce different forms of external fields and spin coupling interactions, and construct three distinct anisotropic spin-1/2 chain models. The influence of these interactions on the MBL phase transition is systematically explored. We first analyze the eigenstate properties by computing the excited-state fidelity. The results show that MBL phase transitions occur in all three models, and that both the anisotropy parameter and the finite system size significantly affect the critical disorder strength of the transition. Moreover, we calculated the bipartite entanglement entropy of the system, and the critical points determined by the intersection of curves for different system sizes are basically consistent with those obtained from the excited-state fidelity. Then, the dynamical characteristics of the systems are studied through the time evolution of diagonal entropy, local magnetization, and fidelity. These observations further confirm the occurrence of the MBL phase transition and allow for a clear distinction between the ergodic (thermal) phase and the many-body localized phase. Finally, to examine the effect of additional interactions on the transition, we incorporate Dzyaloshinskii–Moriya (DM) interactions into the three models. The results demonstrate that the MBL phase transition still occurs in the presence of DM interactions. However, the anisotropy parameter and finite system size significantly affect the critical disorder strength. Moreover, the critical behavior is somewhat suppressed, indicating that DM interactions tend to inhibit the onset of localization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信