爱尔兰卫星量子密钥分配的光学地面站分集

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Naga Lakshmi Anipeddi, Jerry Horgan, Daniel K. L. Oi, Deirdre Kilbane
{"title":"爱尔兰卫星量子密钥分配的光学地面站分集","authors":"Naga Lakshmi Anipeddi,&nbsp;Jerry Horgan,&nbsp;Daniel K. L. Oi,&nbsp;Deirdre Kilbane","doi":"10.1140/epjqt/s40507-025-00390-x","DOIUrl":null,"url":null,"abstract":"<div><p>Space quantum communications is a potential means for establishing global secure communications and quantum networking. Despite pioneering demonstrations of satellite quantum key distribution, considerable challenges remain for wide deployment such as the local effects of the atmosphere on the transmission of single-photon level quantum signals. As part of Ireland’s efforts to establish quantum links with the rest of Europe and further afield, we present a preliminary study of the feasibility of satellite quantum key distribution taking into account geographic and weather effects on the space-Earth channel. Weather data over 5 years covering 4 locations across Ireland were used to assess performance and the prospects of optical ground station (OGS) geographic diversity to improve service availability. Despite significant cloud cover that may reduce the performance of a single OGS location, the use of a 4-OGS network can provide up to 45% improvement for a single satellite exploiting anti-correlation in cloud cover, though most gains are achieved with 2 or 3 OGSs.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00390-x","citationCount":"0","resultStr":"{\"title\":\"Optical ground station diversity for satellite quantum key distribution in Ireland\",\"authors\":\"Naga Lakshmi Anipeddi,&nbsp;Jerry Horgan,&nbsp;Daniel K. L. Oi,&nbsp;Deirdre Kilbane\",\"doi\":\"10.1140/epjqt/s40507-025-00390-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Space quantum communications is a potential means for establishing global secure communications and quantum networking. Despite pioneering demonstrations of satellite quantum key distribution, considerable challenges remain for wide deployment such as the local effects of the atmosphere on the transmission of single-photon level quantum signals. As part of Ireland’s efforts to establish quantum links with the rest of Europe and further afield, we present a preliminary study of the feasibility of satellite quantum key distribution taking into account geographic and weather effects on the space-Earth channel. Weather data over 5 years covering 4 locations across Ireland were used to assess performance and the prospects of optical ground station (OGS) geographic diversity to improve service availability. Despite significant cloud cover that may reduce the performance of a single OGS location, the use of a 4-OGS network can provide up to 45% improvement for a single satellite exploiting anti-correlation in cloud cover, though most gains are achieved with 2 or 3 OGSs.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00390-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00390-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00390-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

空间量子通信是建立全球安全通信和量子网络的潜在手段。尽管卫星量子密钥分发的开创性演示,但广泛部署仍然存在相当大的挑战,例如大气对单光子级量子信号传输的局部影响。作为爱尔兰与欧洲其他地区和更远地区建立量子连接的努力的一部分,我们提出了考虑到地理和天气对空间-地球信道影响的卫星量子密钥分发可行性的初步研究。利用爱尔兰4个地点5年来的天气数据来评估光学地面站(OGS)地理多样性的性能和前景,以提高服务的可用性。尽管大量的云覆盖可能会降低单个OGS位置的性能,但使用4-OGS网络可以为利用云覆盖反相关的单个卫星提供高达45%的改进,尽管大多数增益是通过2或3个OGS实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical ground station diversity for satellite quantum key distribution in Ireland

Space quantum communications is a potential means for establishing global secure communications and quantum networking. Despite pioneering demonstrations of satellite quantum key distribution, considerable challenges remain for wide deployment such as the local effects of the atmosphere on the transmission of single-photon level quantum signals. As part of Ireland’s efforts to establish quantum links with the rest of Europe and further afield, we present a preliminary study of the feasibility of satellite quantum key distribution taking into account geographic and weather effects on the space-Earth channel. Weather data over 5 years covering 4 locations across Ireland were used to assess performance and the prospects of optical ground station (OGS) geographic diversity to improve service availability. Despite significant cloud cover that may reduce the performance of a single OGS location, the use of a 4-OGS network can provide up to 45% improvement for a single satellite exploiting anti-correlation in cloud cover, though most gains are achieved with 2 or 3 OGSs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信