{"title":"基于硅触发器量子比特旋转表面编码的量子计算机的能量和功率缩放","authors":"Marco De Michielis, Elena Ferraro","doi":"10.1140/epjqt/s40507-025-00351-4","DOIUrl":null,"url":null,"abstract":"<div><p>Scalable solutions are essential to achieving the long-term goal of building a fault-tolerant quantum computer and energy-power consumption are fundamental limiting factors for this target. Among the available types of silicon qubits, this work focuses on Flip-Flop (FF) qubits. Energy consumption and power requirements are estimated for a square array of qubits that hosts the logical qubit. The logical qubit is implemented using the rotated Surface Code (SC) for Quantum Error Correction (QEC). By using a universal set of quantum gates, the energy usage, time and power requirements for a SC cycle are estimated based on noise level, code distance and control levels. These estimates are used to provide insights into the main scaling-up challenges for quantum computer development. This is achieved by extending a thermal model that includes energy contributions from both the cryogenic components (such as the qubit array, the cryogenic control electronics, and the cryostat) and the room temperature (RT) section (RT electronics and heat dissipation systems). The maximum numbers of physical and logical qubits are provided, as well as power consumption across the different temperature sections.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00351-4","citationCount":"0","resultStr":"{\"title\":\"Energy and power scaling in quantum computers based on rotated surface codes with silicon flip-flop qubits\",\"authors\":\"Marco De Michielis, Elena Ferraro\",\"doi\":\"10.1140/epjqt/s40507-025-00351-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Scalable solutions are essential to achieving the long-term goal of building a fault-tolerant quantum computer and energy-power consumption are fundamental limiting factors for this target. Among the available types of silicon qubits, this work focuses on Flip-Flop (FF) qubits. Energy consumption and power requirements are estimated for a square array of qubits that hosts the logical qubit. The logical qubit is implemented using the rotated Surface Code (SC) for Quantum Error Correction (QEC). By using a universal set of quantum gates, the energy usage, time and power requirements for a SC cycle are estimated based on noise level, code distance and control levels. These estimates are used to provide insights into the main scaling-up challenges for quantum computer development. This is achieved by extending a thermal model that includes energy contributions from both the cryogenic components (such as the qubit array, the cryogenic control electronics, and the cryostat) and the room temperature (RT) section (RT electronics and heat dissipation systems). The maximum numbers of physical and logical qubits are provided, as well as power consumption across the different temperature sections.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00351-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00351-4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00351-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Energy and power scaling in quantum computers based on rotated surface codes with silicon flip-flop qubits
Scalable solutions are essential to achieving the long-term goal of building a fault-tolerant quantum computer and energy-power consumption are fundamental limiting factors for this target. Among the available types of silicon qubits, this work focuses on Flip-Flop (FF) qubits. Energy consumption and power requirements are estimated for a square array of qubits that hosts the logical qubit. The logical qubit is implemented using the rotated Surface Code (SC) for Quantum Error Correction (QEC). By using a universal set of quantum gates, the energy usage, time and power requirements for a SC cycle are estimated based on noise level, code distance and control levels. These estimates are used to provide insights into the main scaling-up challenges for quantum computer development. This is achieved by extending a thermal model that includes energy contributions from both the cryogenic components (such as the qubit array, the cryogenic control electronics, and the cryostat) and the room temperature (RT) section (RT electronics and heat dissipation systems). The maximum numbers of physical and logical qubits are provided, as well as power consumption across the different temperature sections.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.