子流形的直径和焦半径

IF 0.7 3区 数学 Q3 MATHEMATICS
Ricardo A. E. Mendes
{"title":"子流形的直径和焦半径","authors":"Ricardo A. E. Mendes","doi":"10.1007/s10455-025-10010-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we give a characterization of immersed submanifolds of simply-connected space forms for which the quotient of the extrinsic diameter by the focal radius achieves the minimum possible value of 2. They are essentially round spheres, or the “Veronese” embeddings of projective spaces. The proof combines the classification of submanifolds with planar geodesics due to K. Sakamoto with a version of A. Schur’s Bow Lemma for space curves. Open problems and the relation to recent work by M. Gromov and A. Petrunin are discussed.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"68 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diameter and focal radius of submanifolds\",\"authors\":\"Ricardo A. E. Mendes\",\"doi\":\"10.1007/s10455-025-10010-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note, we give a characterization of immersed submanifolds of simply-connected space forms for which the quotient of the extrinsic diameter by the focal radius achieves the minimum possible value of 2. They are essentially round spheres, or the “Veronese” embeddings of projective spaces. The proof combines the classification of submanifolds with planar geodesics due to K. Sakamoto with a version of A. Schur’s Bow Lemma for space curves. Open problems and the relation to recent work by M. Gromov and A. Petrunin are discussed.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"68 2\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-10010-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-10010-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们给出了单连通空间形式的浸没子流形的一个表征,其外在直径与焦点半径之商达到最小可能值2。它们本质上是圆形的球体,或者是投影空间的“维罗纳式”嵌入。该证明结合了K. Sakamoto的平面测地线子流形的分类和a . Schur的空间曲线Bow引理的一个版本。讨论了开放问题及其与M. Gromov和A. Petrunin最近工作的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diameter and focal radius of submanifolds

In this note, we give a characterization of immersed submanifolds of simply-connected space forms for which the quotient of the extrinsic diameter by the focal radius achieves the minimum possible value of 2. They are essentially round spheres, or the “Veronese” embeddings of projective spaces. The proof combines the classification of submanifolds with planar geodesics due to K. Sakamoto with a version of A. Schur’s Bow Lemma for space curves. Open problems and the relation to recent work by M. Gromov and A. Petrunin are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信