具有平球条件的追捕-逃避合作博弈

Dejan Milutinović;Alexander Von Moll;Satyanarayana Gupta Manyam;David W. Casbeer;Isaac E. Weintraub;Meir Pachter
{"title":"具有平球条件的追捕-逃避合作博弈","authors":"Dejan Milutinović;Alexander Von Moll;Satyanarayana Gupta Manyam;David W. Casbeer;Isaac E. Weintraub;Meir Pachter","doi":"10.1109/OJCSYS.2025.3604640","DOIUrl":null,"url":null,"abstract":"In planar pursuit-evasion differential games considering a faster pursuer and a slower evader, the interception points resulting from equilibrium strategies lie on the Apollonius circle. This property is instrumental for leveraging geometric approaches for solving multiple pursuit-evasion scenarios in the plane. In this paper, we study a pursuit-evasion differential game on a sphere and generalize the planar Apollonius circle to the spherical domain. For the differential game, we provide equilibrium strategies for all initial positions of the pursuer and evader, including a special case when they are on the opposite sides of the sphere and on the same line with the center of the sphere when there are infinitely many geodesics between the two players. In contrast to planar scenarios, on the sphere we find that the interception point from the equilibrium strategies can leave the Apollonius domain boundary. We present a condition to ensure the intercept point remains on the boundary of the Apollonius domain. This condition allows for generalizing planar pursuit-evasion strategies to the sphere, and we show how these results are applied by analyzing the scenarios of target guarding and two-pursuer, single evader differential games on the sphere.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"4 ","pages":"360-372"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11145945","citationCount":"0","resultStr":"{\"title\":\"Cooperative Pursuit-Evasion Games With a Flat Sphere Condition\",\"authors\":\"Dejan Milutinović;Alexander Von Moll;Satyanarayana Gupta Manyam;David W. Casbeer;Isaac E. Weintraub;Meir Pachter\",\"doi\":\"10.1109/OJCSYS.2025.3604640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In planar pursuit-evasion differential games considering a faster pursuer and a slower evader, the interception points resulting from equilibrium strategies lie on the Apollonius circle. This property is instrumental for leveraging geometric approaches for solving multiple pursuit-evasion scenarios in the plane. In this paper, we study a pursuit-evasion differential game on a sphere and generalize the planar Apollonius circle to the spherical domain. For the differential game, we provide equilibrium strategies for all initial positions of the pursuer and evader, including a special case when they are on the opposite sides of the sphere and on the same line with the center of the sphere when there are infinitely many geodesics between the two players. In contrast to planar scenarios, on the sphere we find that the interception point from the equilibrium strategies can leave the Apollonius domain boundary. We present a condition to ensure the intercept point remains on the boundary of the Apollonius domain. This condition allows for generalizing planar pursuit-evasion strategies to the sphere, and we show how these results are applied by analyzing the scenarios of target guarding and two-pursuer, single evader differential games on the sphere.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"4 \",\"pages\":\"360-372\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11145945\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11145945/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11145945/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在考虑快速追逃者和慢速追逃者的平面追逃微分对策中,均衡策略产生的拦截点位于阿波罗尼乌斯圆上。这个性质有助于利用几何方法来解决平面上的多个追捕逃避场景。本文研究了球面上的追-避微分对策,并将平面阿波罗圆推广到球面上。对于微分对策,我们提供了追捕者和逃避者的所有初始位置的均衡策略,包括当他们在球体的相对两侧并且与球体中心在同一条线上时,当两个参与者之间存在无限多条测地线时的特殊情况。与平面场景相比,在球面上,我们发现平衡策略的拦截点可以离开阿波罗尼乌斯域边界。我们提出了一个保证截点保持在阿波罗尼乌斯域边界上的条件。这个条件允许将平面追捕-逃避策略推广到球体,我们通过分析球体上的目标守卫和两个追捕者,一个逃避者微分博弈的场景来展示这些结果是如何应用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative Pursuit-Evasion Games With a Flat Sphere Condition
In planar pursuit-evasion differential games considering a faster pursuer and a slower evader, the interception points resulting from equilibrium strategies lie on the Apollonius circle. This property is instrumental for leveraging geometric approaches for solving multiple pursuit-evasion scenarios in the plane. In this paper, we study a pursuit-evasion differential game on a sphere and generalize the planar Apollonius circle to the spherical domain. For the differential game, we provide equilibrium strategies for all initial positions of the pursuer and evader, including a special case when they are on the opposite sides of the sphere and on the same line with the center of the sphere when there are infinitely many geodesics between the two players. In contrast to planar scenarios, on the sphere we find that the interception point from the equilibrium strategies can leave the Apollonius domain boundary. We present a condition to ensure the intercept point remains on the boundary of the Apollonius domain. This condition allows for generalizing planar pursuit-evasion strategies to the sphere, and we show how these results are applied by analyzing the scenarios of target guarding and two-pursuer, single evader differential games on the sphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信