{"title":"LightPUF-IIoT:一种基于puf的轻量级认证方案,可在雾辅助IIoT数据共享中实时检测流氓设备","authors":"Somchart Fugkeaw;Archawit Changtor;Thanabordee Maneerat;Pakapon Rattanasrisuk;Kittipat Tangtanawirut","doi":"10.1109/OJCS.2025.3607984","DOIUrl":null,"url":null,"abstract":"The Industrial Internet of Things (IIoT) generates a vast volume of sensitive data that demands not only confidentiality but also authenticity and integrity—especially in large-scale deployments. Ensuring that data originates from trusted devices is critical; however, existing authentication mechanisms often lack scalability and effective revocation support. To address these challenges, we propose <bold>LightPUF-IIoT</b>, a secure and lightweight authentication scheme designed for fog-assisted IIoT data sharing. The scheme leverages <bold>Physical Unclonable Functions (PUFs)</b> and <bold>Non-Interactive Zero-Knowledge Proofs (NIZKPs)</b> to enable scalable, group-based authentication for devices and fog nodes. By binding authenticated identities to cryptographic tokens used during data transmission, LightPUF-IIoT ensures data authenticity and supports real-time rogue device detection. The scheme also includes efficient mechanisms for device revocation and secure token regeneration. Experimental results show that LightPUF-IIoT provides strong security guarantees with minimal resource overhead and significantly outperforms existing approaches in terms of computational cost, scalability, and authentication throughput.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1438-1450"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11153801","citationCount":"0","resultStr":"{\"title\":\"LightPUF-IIoT: A Lightweight PUF-Based Authentication Scheme With Real-Time Detection of Rogue Devices in Fog-Assisted IIoT Data Sharing\",\"authors\":\"Somchart Fugkeaw;Archawit Changtor;Thanabordee Maneerat;Pakapon Rattanasrisuk;Kittipat Tangtanawirut\",\"doi\":\"10.1109/OJCS.2025.3607984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Industrial Internet of Things (IIoT) generates a vast volume of sensitive data that demands not only confidentiality but also authenticity and integrity—especially in large-scale deployments. Ensuring that data originates from trusted devices is critical; however, existing authentication mechanisms often lack scalability and effective revocation support. To address these challenges, we propose <bold>LightPUF-IIoT</b>, a secure and lightweight authentication scheme designed for fog-assisted IIoT data sharing. The scheme leverages <bold>Physical Unclonable Functions (PUFs)</b> and <bold>Non-Interactive Zero-Knowledge Proofs (NIZKPs)</b> to enable scalable, group-based authentication for devices and fog nodes. By binding authenticated identities to cryptographic tokens used during data transmission, LightPUF-IIoT ensures data authenticity and supports real-time rogue device detection. The scheme also includes efficient mechanisms for device revocation and secure token regeneration. Experimental results show that LightPUF-IIoT provides strong security guarantees with minimal resource overhead and significantly outperforms existing approaches in terms of computational cost, scalability, and authentication throughput.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"6 \",\"pages\":\"1438-1450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11153801\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11153801/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11153801/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LightPUF-IIoT: A Lightweight PUF-Based Authentication Scheme With Real-Time Detection of Rogue Devices in Fog-Assisted IIoT Data Sharing
The Industrial Internet of Things (IIoT) generates a vast volume of sensitive data that demands not only confidentiality but also authenticity and integrity—especially in large-scale deployments. Ensuring that data originates from trusted devices is critical; however, existing authentication mechanisms often lack scalability and effective revocation support. To address these challenges, we propose LightPUF-IIoT, a secure and lightweight authentication scheme designed for fog-assisted IIoT data sharing. The scheme leverages Physical Unclonable Functions (PUFs) and Non-Interactive Zero-Knowledge Proofs (NIZKPs) to enable scalable, group-based authentication for devices and fog nodes. By binding authenticated identities to cryptographic tokens used during data transmission, LightPUF-IIoT ensures data authenticity and supports real-time rogue device detection. The scheme also includes efficient mechanisms for device revocation and secure token regeneration. Experimental results show that LightPUF-IIoT provides strong security guarantees with minimal resource overhead and significantly outperforms existing approaches in terms of computational cost, scalability, and authentication throughput.