Yu Lei, Yining Zheng, Yiting Yan, Kai Zhang, Xuyang Sun, Bo Yang, Lan Ge, Zhongming Meng, Xi Cao, Xiumin Zhang, Xiaoting Yan, Yangbin Xu, Ting Zhang, Jinping Shi, Shiwei Chen, Qiang Qiu, Yulin Chen, Lu Deng, Zhipeng Li, Xiaolong Wang, Ke Zhang
{"title":"破译瘤胃微生物群的功能景观揭示了布氏普氏菌在山羊乳脂合成中的作用","authors":"Yu Lei, Yining Zheng, Yiting Yan, Kai Zhang, Xuyang Sun, Bo Yang, Lan Ge, Zhongming Meng, Xi Cao, Xiumin Zhang, Xiaoting Yan, Yangbin Xu, Ting Zhang, Jinping Shi, Shiwei Chen, Qiang Qiu, Yulin Chen, Lu Deng, Zhipeng Li, Xiaolong Wang, Ke Zhang","doi":"10.1186/s13059-025-03788-z","DOIUrl":null,"url":null,"abstract":"The rumen microbiome is critical for regulating milk synthesis in dairy livestock, yet the molecular mechanisms linking microbial functions to host lipid metabolism remain poorly understood. While host genetics and microbial composition have been studied, integrative analyses of the rumen-blood-mammary gland axis remain lacking. Here, we present the goat rumen microbial reference gene catalog and 5514 metagenome-assembled genomes (MAGs) from 160 multi-breed rumen samples. Integrating this resource with lactation data from 177 Saanen dairy goats, we identify Prevotella spp. as keystone taxa driving concurrent increases in milk yield and fat percentage. Functional and metabolomic profiling reveals that Prevotella bryantii B14 synthesizes nicotinate, which is converted to nicotinamide in circulation. Using in vitro and in vivo models, we demonstrate that nicotinamide activates the mTORC1 pathway in mammary epithelial cells via GPR109A, which upregulates transcription factors SREBP and PPAR-γ and the downstream lipogenic genes FASN, ACCα, and SCD1 to promote milk fat synthesis. In contrast, the relative deficiency of P. bryantii B14 and the associated reduction in nicotinamide levels in the rumen of poor lactating dairy goats may represent a significant contributor to impaired lactation performance. Additionally, the enhanced hydrogenotrophic methanogenesis activity may also adversely affect their lactation phenotype. Our study establishes a causal link between rumen microbial metabolism and mammary lipid synthesis mediated by nicotinamide-mTORC1 signaling and identifies Prevotella abundance as a biomarker for precision breeding. These findings advance the understanding of microbiome-host crosstalk in lactation and provide actionable strategies for enhancing dairy productivity through microbiota-targeted interventions.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"18 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering functional landscapes of rumen microbiota unveils the role of Prevotella bryantii in milk fat synthesis in goats\",\"authors\":\"Yu Lei, Yining Zheng, Yiting Yan, Kai Zhang, Xuyang Sun, Bo Yang, Lan Ge, Zhongming Meng, Xi Cao, Xiumin Zhang, Xiaoting Yan, Yangbin Xu, Ting Zhang, Jinping Shi, Shiwei Chen, Qiang Qiu, Yulin Chen, Lu Deng, Zhipeng Li, Xiaolong Wang, Ke Zhang\",\"doi\":\"10.1186/s13059-025-03788-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rumen microbiome is critical for regulating milk synthesis in dairy livestock, yet the molecular mechanisms linking microbial functions to host lipid metabolism remain poorly understood. While host genetics and microbial composition have been studied, integrative analyses of the rumen-blood-mammary gland axis remain lacking. Here, we present the goat rumen microbial reference gene catalog and 5514 metagenome-assembled genomes (MAGs) from 160 multi-breed rumen samples. Integrating this resource with lactation data from 177 Saanen dairy goats, we identify Prevotella spp. as keystone taxa driving concurrent increases in milk yield and fat percentage. Functional and metabolomic profiling reveals that Prevotella bryantii B14 synthesizes nicotinate, which is converted to nicotinamide in circulation. Using in vitro and in vivo models, we demonstrate that nicotinamide activates the mTORC1 pathway in mammary epithelial cells via GPR109A, which upregulates transcription factors SREBP and PPAR-γ and the downstream lipogenic genes FASN, ACCα, and SCD1 to promote milk fat synthesis. In contrast, the relative deficiency of P. bryantii B14 and the associated reduction in nicotinamide levels in the rumen of poor lactating dairy goats may represent a significant contributor to impaired lactation performance. Additionally, the enhanced hydrogenotrophic methanogenesis activity may also adversely affect their lactation phenotype. Our study establishes a causal link between rumen microbial metabolism and mammary lipid synthesis mediated by nicotinamide-mTORC1 signaling and identifies Prevotella abundance as a biomarker for precision breeding. These findings advance the understanding of microbiome-host crosstalk in lactation and provide actionable strategies for enhancing dairy productivity through microbiota-targeted interventions.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03788-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03788-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Deciphering functional landscapes of rumen microbiota unveils the role of Prevotella bryantii in milk fat synthesis in goats
The rumen microbiome is critical for regulating milk synthesis in dairy livestock, yet the molecular mechanisms linking microbial functions to host lipid metabolism remain poorly understood. While host genetics and microbial composition have been studied, integrative analyses of the rumen-blood-mammary gland axis remain lacking. Here, we present the goat rumen microbial reference gene catalog and 5514 metagenome-assembled genomes (MAGs) from 160 multi-breed rumen samples. Integrating this resource with lactation data from 177 Saanen dairy goats, we identify Prevotella spp. as keystone taxa driving concurrent increases in milk yield and fat percentage. Functional and metabolomic profiling reveals that Prevotella bryantii B14 synthesizes nicotinate, which is converted to nicotinamide in circulation. Using in vitro and in vivo models, we demonstrate that nicotinamide activates the mTORC1 pathway in mammary epithelial cells via GPR109A, which upregulates transcription factors SREBP and PPAR-γ and the downstream lipogenic genes FASN, ACCα, and SCD1 to promote milk fat synthesis. In contrast, the relative deficiency of P. bryantii B14 and the associated reduction in nicotinamide levels in the rumen of poor lactating dairy goats may represent a significant contributor to impaired lactation performance. Additionally, the enhanced hydrogenotrophic methanogenesis activity may also adversely affect their lactation phenotype. Our study establishes a causal link between rumen microbial metabolism and mammary lipid synthesis mediated by nicotinamide-mTORC1 signaling and identifies Prevotella abundance as a biomarker for precision breeding. These findings advance the understanding of microbiome-host crosstalk in lactation and provide actionable strategies for enhancing dairy productivity through microbiota-targeted interventions.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.