{"title":"单模态指导下的多模态对比药物协同作用预测模型","authors":"Tong Luo, Zheng Zhang, Xian-gan Chen, Zhi Li","doi":"10.1186/s13321-025-01087-0","DOIUrl":null,"url":null,"abstract":"<div><p>Compared to monotherapy, drug combinations exhibit stronger efficacy, fewer side effects, and lower drug resistance in cancer treatment. However, traditional wet-lab methods for screening synergistic drug combinations are both costly and inefficient. Lately, the development of various drug synergy methods has been promoted by the emergence of multiple drug synergy databases. Many of these methods use multimodal data and achieve good results. However, if various modalities of data is given equal consideration without taking into account the differences in features between the two modalities, this may lead to less effective multi-modal learning. We propose a multi-modal contrastive learning method for drug synergy prediction, named MCDSP. Specifically, MCDSP extracts entity embedding features of drugs and cell lines from heterogeneous graphs, while leveraging molecular fingerprints and gene expression features as biomolecular features for drugs and cell lines. These two different types of features serve as two types of modality information. Under the guided of single modality prediction tasks, we evaluated the relevant information of each modality. Through contrastive learning, the prediction bias of the two modalities are reduced, which obtain improved quality of multi-modal feature. Experiments show that MCDSP outperforms baseline methods on large datasets, and it performs well in handling unknown drug combinations and cell lines. MCDSP has demonstrated significant effectiveness in predicting drug synergy.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01087-0","citationCount":"0","resultStr":"{\"title\":\"Multi-modal contrastive drug synergy prediction model guided by single modality\",\"authors\":\"Tong Luo, Zheng Zhang, Xian-gan Chen, Zhi Li\",\"doi\":\"10.1186/s13321-025-01087-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compared to monotherapy, drug combinations exhibit stronger efficacy, fewer side effects, and lower drug resistance in cancer treatment. However, traditional wet-lab methods for screening synergistic drug combinations are both costly and inefficient. Lately, the development of various drug synergy methods has been promoted by the emergence of multiple drug synergy databases. Many of these methods use multimodal data and achieve good results. However, if various modalities of data is given equal consideration without taking into account the differences in features between the two modalities, this may lead to less effective multi-modal learning. We propose a multi-modal contrastive learning method for drug synergy prediction, named MCDSP. Specifically, MCDSP extracts entity embedding features of drugs and cell lines from heterogeneous graphs, while leveraging molecular fingerprints and gene expression features as biomolecular features for drugs and cell lines. These two different types of features serve as two types of modality information. Under the guided of single modality prediction tasks, we evaluated the relevant information of each modality. Through contrastive learning, the prediction bias of the two modalities are reduced, which obtain improved quality of multi-modal feature. Experiments show that MCDSP outperforms baseline methods on large datasets, and it performs well in handling unknown drug combinations and cell lines. MCDSP has demonstrated significant effectiveness in predicting drug synergy.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01087-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01087-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01087-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-modal contrastive drug synergy prediction model guided by single modality
Compared to monotherapy, drug combinations exhibit stronger efficacy, fewer side effects, and lower drug resistance in cancer treatment. However, traditional wet-lab methods for screening synergistic drug combinations are both costly and inefficient. Lately, the development of various drug synergy methods has been promoted by the emergence of multiple drug synergy databases. Many of these methods use multimodal data and achieve good results. However, if various modalities of data is given equal consideration without taking into account the differences in features between the two modalities, this may lead to less effective multi-modal learning. We propose a multi-modal contrastive learning method for drug synergy prediction, named MCDSP. Specifically, MCDSP extracts entity embedding features of drugs and cell lines from heterogeneous graphs, while leveraging molecular fingerprints and gene expression features as biomolecular features for drugs and cell lines. These two different types of features serve as two types of modality information. Under the guided of single modality prediction tasks, we evaluated the relevant information of each modality. Through contrastive learning, the prediction bias of the two modalities are reduced, which obtain improved quality of multi-modal feature. Experiments show that MCDSP outperforms baseline methods on large datasets, and it performs well in handling unknown drug combinations and cell lines. MCDSP has demonstrated significant effectiveness in predicting drug synergy.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.