Fabian Liessmann, Paul Eisenhuth, Alexander Fürll, Oanh Vu, Rocco Moretti, Jens Meiler
{"title":"缓存:利用Rosetta的超大文库筛选,鉴定富亮氨酸重复激酶2的WD-repeat结构域的新结合物","authors":"Fabian Liessmann, Paul Eisenhuth, Alexander Fürll, Oanh Vu, Rocco Moretti, Jens Meiler","doi":"10.1186/s13321-025-01084-3","DOIUrl":null,"url":null,"abstract":"<p>In this study, we present a pipeline for identifying novel ligands targeting the Tryptophan-Aspartate-Repeat domain 40 (WDR40) of Leucine-Rich Repeat Kinase 2 (LRRK2), a protein associated with Parkinson’s disease, as part of the first Critical Assessment of Computational Hit-finding Experiments (CACHE) challenge, a blind benchmark experiment for drug discovery. Mutations in this protein are the most common genetic cause of familial Parkinson’s disease, yet this target remains understudied. We conducted an ultra-large library screening (ULLS) of the Enamine REAL space using a newly developed evolutionary algorithm, RosettaEvolutionaryLigand (REvoLd), which allows for efficient screening of combinatorial compound libraries. The protocol involved refining the target structure with molecular dynamic simulations, identifying a binding site via blind-docking, and optimizing compounds through REvoLd, culminating in a manual selection amongst the top-scoring REvoLd hits. A single binder molecule was identified that derived from the combination of two Enamine building blocks. In the second round, derivatives of the hit compound were used as input for REvoLd to further sample within the Enamine REAL space. Ultimately, a total of five molecules were identified, from which three show a measurable dissociation constant K<span>\\(_D\\)</span> value better than 150 <span>\\(\\upmu\\)</span> μm, showcasing the effectiveness of this approach. However, it also highlighted shortcomings, such as the preference for nitrogen-rich rings in the RosettaLigand scoring function.</p><p>We introduce the first real-world application for REvoLd, an evolutionary docking algorithm enabling efficient ultra-large library screening for flexible protein targets. Our approach identified novel binders for the WDR40 domain of LRRK2 within the CACHE challenge #1, representing the first prospective validation of REvoLd. Here, we present a preparation pipeline to allow exploration of a large protein pocket with unspecific binding areas, and unlike prior brute-force docking efforts, our method integrates receptor flexibility and combinatorial chemistry optimization.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01084-3","citationCount":"0","resultStr":"{\"title\":\"Cache: Utilizing ultra-large library screening in Rosetta to identify novel binders of the WD-repeat domain of Leucine-Rich Repeat Kinase 2\",\"authors\":\"Fabian Liessmann, Paul Eisenhuth, Alexander Fürll, Oanh Vu, Rocco Moretti, Jens Meiler\",\"doi\":\"10.1186/s13321-025-01084-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we present a pipeline for identifying novel ligands targeting the Tryptophan-Aspartate-Repeat domain 40 (WDR40) of Leucine-Rich Repeat Kinase 2 (LRRK2), a protein associated with Parkinson’s disease, as part of the first Critical Assessment of Computational Hit-finding Experiments (CACHE) challenge, a blind benchmark experiment for drug discovery. Mutations in this protein are the most common genetic cause of familial Parkinson’s disease, yet this target remains understudied. We conducted an ultra-large library screening (ULLS) of the Enamine REAL space using a newly developed evolutionary algorithm, RosettaEvolutionaryLigand (REvoLd), which allows for efficient screening of combinatorial compound libraries. The protocol involved refining the target structure with molecular dynamic simulations, identifying a binding site via blind-docking, and optimizing compounds through REvoLd, culminating in a manual selection amongst the top-scoring REvoLd hits. A single binder molecule was identified that derived from the combination of two Enamine building blocks. In the second round, derivatives of the hit compound were used as input for REvoLd to further sample within the Enamine REAL space. Ultimately, a total of five molecules were identified, from which three show a measurable dissociation constant K<span>\\\\(_D\\\\)</span> value better than 150 <span>\\\\(\\\\upmu\\\\)</span> μm, showcasing the effectiveness of this approach. However, it also highlighted shortcomings, such as the preference for nitrogen-rich rings in the RosettaLigand scoring function.</p><p>We introduce the first real-world application for REvoLd, an evolutionary docking algorithm enabling efficient ultra-large library screening for flexible protein targets. Our approach identified novel binders for the WDR40 domain of LRRK2 within the CACHE challenge #1, representing the first prospective validation of REvoLd. Here, we present a preparation pipeline to allow exploration of a large protein pocket with unspecific binding areas, and unlike prior brute-force docking efforts, our method integrates receptor flexibility and combinatorial chemistry optimization.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01084-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01084-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01084-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cache: Utilizing ultra-large library screening in Rosetta to identify novel binders of the WD-repeat domain of Leucine-Rich Repeat Kinase 2
In this study, we present a pipeline for identifying novel ligands targeting the Tryptophan-Aspartate-Repeat domain 40 (WDR40) of Leucine-Rich Repeat Kinase 2 (LRRK2), a protein associated with Parkinson’s disease, as part of the first Critical Assessment of Computational Hit-finding Experiments (CACHE) challenge, a blind benchmark experiment for drug discovery. Mutations in this protein are the most common genetic cause of familial Parkinson’s disease, yet this target remains understudied. We conducted an ultra-large library screening (ULLS) of the Enamine REAL space using a newly developed evolutionary algorithm, RosettaEvolutionaryLigand (REvoLd), which allows for efficient screening of combinatorial compound libraries. The protocol involved refining the target structure with molecular dynamic simulations, identifying a binding site via blind-docking, and optimizing compounds through REvoLd, culminating in a manual selection amongst the top-scoring REvoLd hits. A single binder molecule was identified that derived from the combination of two Enamine building blocks. In the second round, derivatives of the hit compound were used as input for REvoLd to further sample within the Enamine REAL space. Ultimately, a total of five molecules were identified, from which three show a measurable dissociation constant K\(_D\) value better than 150 \(\upmu\) μm, showcasing the effectiveness of this approach. However, it also highlighted shortcomings, such as the preference for nitrogen-rich rings in the RosettaLigand scoring function.
We introduce the first real-world application for REvoLd, an evolutionary docking algorithm enabling efficient ultra-large library screening for flexible protein targets. Our approach identified novel binders for the WDR40 domain of LRRK2 within the CACHE challenge #1, representing the first prospective validation of REvoLd. Here, we present a preparation pipeline to allow exploration of a large protein pocket with unspecific binding areas, and unlike prior brute-force docking efforts, our method integrates receptor flexibility and combinatorial chemistry optimization.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.