残基分解多肽凝聚表面的液态超极化核磁共振

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dörte Brandis, , , Ertan Turhan, , , Milan Zachrdla, , and , Dennis Kurzbach*, 
{"title":"残基分解多肽凝聚表面的液态超极化核磁共振","authors":"Dörte Brandis,&nbsp;, ,&nbsp;Ertan Turhan,&nbsp;, ,&nbsp;Milan Zachrdla,&nbsp;, and ,&nbsp;Dennis Kurzbach*,&nbsp;","doi":"10.1021/jacs.5c15053","DOIUrl":null,"url":null,"abstract":"<p >Understanding how biomolecular condensates interact with their environment requires atomic-level insights into their surface composition. However, conventional Nuclear Magnetic Resonance (NMR) spectroscopy lacks the sensitivity to probe solvent-exposed regions in large, phase-separated peptide systems, where surface moieties are sparse relative to bulk residues. Here, we introduce hyperpolarized liquid-state surface-specific NMR spectroscopy, a technique that visualizes solvent-accessible residues in large biomolecular condensates. In combination with unconventional sample handling instrumentation and hyperpolarization-specific data processing, we report high-resolution hyperpolarized surface NMR spectra with spectral qualities that do not fall short of cutting-edge high-field methods yet have substantially boosted sensitivity. Targeting the biotechnologically widely used elastin-like polypeptide (ELP) nanoscale complexes, we demonstrate residue-resolved detection of the water interface of mega Dalton-sized peptide condensates with sensitivity enhancements reaching 2 orders of magnitude. Our method reveals glycine residues at the coacervate surface while hydrophobic core residues remain suppressed, providing direct evidence for glycine-rich surface segregation in these biomaterials. These findings resolve long-standing questions about ELP surface architecture and open an avenue for a solution-state analog to surface-enhanced solid-state NMR. The presented advance might thus foster detailed investigations of soft-matter interfaces in protein condensates, synthetic coacervates, and bioengineered materials.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 40","pages":"36920–36927"},"PeriodicalIF":15.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/jacs.5c15053","citationCount":"0","resultStr":"{\"title\":\"Residue-Resolved Liquid-State Hyperpolarized NMR of Peptide Condensate Surfaces\",\"authors\":\"Dörte Brandis,&nbsp;, ,&nbsp;Ertan Turhan,&nbsp;, ,&nbsp;Milan Zachrdla,&nbsp;, and ,&nbsp;Dennis Kurzbach*,&nbsp;\",\"doi\":\"10.1021/jacs.5c15053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding how biomolecular condensates interact with their environment requires atomic-level insights into their surface composition. However, conventional Nuclear Magnetic Resonance (NMR) spectroscopy lacks the sensitivity to probe solvent-exposed regions in large, phase-separated peptide systems, where surface moieties are sparse relative to bulk residues. Here, we introduce hyperpolarized liquid-state surface-specific NMR spectroscopy, a technique that visualizes solvent-accessible residues in large biomolecular condensates. In combination with unconventional sample handling instrumentation and hyperpolarization-specific data processing, we report high-resolution hyperpolarized surface NMR spectra with spectral qualities that do not fall short of cutting-edge high-field methods yet have substantially boosted sensitivity. Targeting the biotechnologically widely used elastin-like polypeptide (ELP) nanoscale complexes, we demonstrate residue-resolved detection of the water interface of mega Dalton-sized peptide condensates with sensitivity enhancements reaching 2 orders of magnitude. Our method reveals glycine residues at the coacervate surface while hydrophobic core residues remain suppressed, providing direct evidence for glycine-rich surface segregation in these biomaterials. These findings resolve long-standing questions about ELP surface architecture and open an avenue for a solution-state analog to surface-enhanced solid-state NMR. The presented advance might thus foster detailed investigations of soft-matter interfaces in protein condensates, synthetic coacervates, and bioengineered materials.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 40\",\"pages\":\"36920–36927\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/jacs.5c15053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c15053\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c15053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解生物分子凝聚物如何与环境相互作用需要对其表面组成进行原子水平的观察。然而,传统的核磁共振(NMR)光谱学缺乏对大型相分离肽体系中探针溶剂暴露区域的灵敏度,这些区域的表面部分相对于大块残基来说是稀疏的。在这里,我们介绍了超极化液态表面特异性核磁共振波谱,一种可视化大生物分子凝聚物中溶剂可接近残留物的技术。结合非常规样品处理仪器和超极化特定数据处理,我们报告了高分辨率超极化表面核磁共振光谱,其光谱质量不低于尖端的高场方法,但大大提高了灵敏度。针对生物技术上广泛使用的弹性蛋白样多肽(ELP)纳米级配合物,我们展示了对兆道尔顿大小的肽凝聚物的水界面的残留物分辨检测,灵敏度提高了2个数量级。我们的方法揭示了聚簇状表面的甘氨酸残基,而疏水性核心残基仍然被抑制,这为这些生物材料中富含甘氨酸的表面分离提供了直接证据。这些发现解决了长期存在的关于ELP表面结构的问题,并为表面增强固态核磁共振的溶液态模拟开辟了道路。提出的进展可能因此促进对蛋白质凝聚体、合成凝聚体和生物工程材料中的软物质界面的详细研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Residue-Resolved Liquid-State Hyperpolarized NMR of Peptide Condensate Surfaces

Residue-Resolved Liquid-State Hyperpolarized NMR of Peptide Condensate Surfaces

Understanding how biomolecular condensates interact with their environment requires atomic-level insights into their surface composition. However, conventional Nuclear Magnetic Resonance (NMR) spectroscopy lacks the sensitivity to probe solvent-exposed regions in large, phase-separated peptide systems, where surface moieties are sparse relative to bulk residues. Here, we introduce hyperpolarized liquid-state surface-specific NMR spectroscopy, a technique that visualizes solvent-accessible residues in large biomolecular condensates. In combination with unconventional sample handling instrumentation and hyperpolarization-specific data processing, we report high-resolution hyperpolarized surface NMR spectra with spectral qualities that do not fall short of cutting-edge high-field methods yet have substantially boosted sensitivity. Targeting the biotechnologically widely used elastin-like polypeptide (ELP) nanoscale complexes, we demonstrate residue-resolved detection of the water interface of mega Dalton-sized peptide condensates with sensitivity enhancements reaching 2 orders of magnitude. Our method reveals glycine residues at the coacervate surface while hydrophobic core residues remain suppressed, providing direct evidence for glycine-rich surface segregation in these biomaterials. These findings resolve long-standing questions about ELP surface architecture and open an avenue for a solution-state analog to surface-enhanced solid-state NMR. The presented advance might thus foster detailed investigations of soft-matter interfaces in protein condensates, synthetic coacervates, and bioengineered materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信