卡宾分子量子比特的光学检测磁共振

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Simon Roggors, , , Nico Striegler, , , Thomas Unden, , , Oleksiy Khavryuchenko, , , Alon Salhov, , , Jochen Scharpf, , , Martin B. Plenio, , , Alex Retzker, , , Fedor Jelezko, , , Matthias Pfender, , , Philipp Neumann, , , Tim R. Eichhorn, , , Tobias A. Schaub*, , and , Ilai Schwartz*, 
{"title":"卡宾分子量子比特的光学检测磁共振","authors":"Simon Roggors,&nbsp;, ,&nbsp;Nico Striegler,&nbsp;, ,&nbsp;Thomas Unden,&nbsp;, ,&nbsp;Oleksiy Khavryuchenko,&nbsp;, ,&nbsp;Alon Salhov,&nbsp;, ,&nbsp;Jochen Scharpf,&nbsp;, ,&nbsp;Martin B. Plenio,&nbsp;, ,&nbsp;Alex Retzker,&nbsp;, ,&nbsp;Fedor Jelezko,&nbsp;, ,&nbsp;Matthias Pfender,&nbsp;, ,&nbsp;Philipp Neumann,&nbsp;, ,&nbsp;Tim R. Eichhorn,&nbsp;, ,&nbsp;Tobias A. Schaub*,&nbsp;, and ,&nbsp;Ilai Schwartz*,&nbsp;","doi":"10.1021/jacs.5c10272","DOIUrl":null,"url":null,"abstract":"<p >Solid-state quantum systems with optical and spin degrees of freedom have found widespread application in emerging quantum technologies. Recently, molecular qubits came forward as precisely tunable entities that present a compelling alternative to well-established yet hard-to-tune point defects in solid-state systems. In this work, we disclose ground-state triplet carbenes as purely organic qubits comprising two unpaired electrons in close proximity that can be generated in a crystalline matrix with high spatial accuracy via <i>in situ</i> photoactivation. We further demonstrate how state-of-the-art multireference quantum chemical calculations provide insight into their fundamental spin characteristics. As a result, several key assets were realized in a single solid-state qubit material under cryogenic conditions: The exclusive use of light elements (C, H, N, O), photolithographic patterning, optical spin-selective transitions, and a large zero-field splitting in the GHz regime, which, taken together, lays the ground for optically detected magnetic resonance with remarkable fluorescence contrast of &gt;40% and record-high spin coherence times of <i>T</i><sub>2</sub> = 157(4) μs at 5 K.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 40","pages":"36383–36392"},"PeriodicalIF":15.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optically Detected Magnetic Resonance on Carbene Molecular Qubits\",\"authors\":\"Simon Roggors,&nbsp;, ,&nbsp;Nico Striegler,&nbsp;, ,&nbsp;Thomas Unden,&nbsp;, ,&nbsp;Oleksiy Khavryuchenko,&nbsp;, ,&nbsp;Alon Salhov,&nbsp;, ,&nbsp;Jochen Scharpf,&nbsp;, ,&nbsp;Martin B. Plenio,&nbsp;, ,&nbsp;Alex Retzker,&nbsp;, ,&nbsp;Fedor Jelezko,&nbsp;, ,&nbsp;Matthias Pfender,&nbsp;, ,&nbsp;Philipp Neumann,&nbsp;, ,&nbsp;Tim R. Eichhorn,&nbsp;, ,&nbsp;Tobias A. Schaub*,&nbsp;, and ,&nbsp;Ilai Schwartz*,&nbsp;\",\"doi\":\"10.1021/jacs.5c10272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solid-state quantum systems with optical and spin degrees of freedom have found widespread application in emerging quantum technologies. Recently, molecular qubits came forward as precisely tunable entities that present a compelling alternative to well-established yet hard-to-tune point defects in solid-state systems. In this work, we disclose ground-state triplet carbenes as purely organic qubits comprising two unpaired electrons in close proximity that can be generated in a crystalline matrix with high spatial accuracy via <i>in situ</i> photoactivation. We further demonstrate how state-of-the-art multireference quantum chemical calculations provide insight into their fundamental spin characteristics. As a result, several key assets were realized in a single solid-state qubit material under cryogenic conditions: The exclusive use of light elements (C, H, N, O), photolithographic patterning, optical spin-selective transitions, and a large zero-field splitting in the GHz regime, which, taken together, lays the ground for optically detected magnetic resonance with remarkable fluorescence contrast of &gt;40% and record-high spin coherence times of <i>T</i><sub>2</sub> = 157(4) μs at 5 K.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 40\",\"pages\":\"36383–36392\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c10272\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c10272","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有光学自由度和自旋自由度的固体量子系统在新兴量子技术中得到了广泛的应用。最近,分子量子比特作为精确可调谐的实体出现,为固态系统中已建立但难以调谐的点缺陷提供了令人信服的替代方案。在这项工作中,我们揭示了基态三重态碳烯作为纯有机量子比特,由两个未配对的电子组成,它们可以通过原位光激活在晶体基质中以高空间精度产生。我们进一步展示了最先进的多参考量子化学计算如何提供对其基本自旋特性的见解。因此,在低温条件下,在单个固态量子比特材料中实现了几个关键资产:光元素(C, H, N, O)的独家使用,光刻图图化,光学自旋选择跃迁,以及GHz区域的大零场分裂,这些共同为光学检测磁共振奠定了基础,其荧光对比度达到>;40%,在5k时具有创纪录的高自旋相干时间T2 = 157(4) μs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optically Detected Magnetic Resonance on Carbene Molecular Qubits

Optically Detected Magnetic Resonance on Carbene Molecular Qubits

Optically Detected Magnetic Resonance on Carbene Molecular Qubits

Solid-state quantum systems with optical and spin degrees of freedom have found widespread application in emerging quantum technologies. Recently, molecular qubits came forward as precisely tunable entities that present a compelling alternative to well-established yet hard-to-tune point defects in solid-state systems. In this work, we disclose ground-state triplet carbenes as purely organic qubits comprising two unpaired electrons in close proximity that can be generated in a crystalline matrix with high spatial accuracy via in situ photoactivation. We further demonstrate how state-of-the-art multireference quantum chemical calculations provide insight into their fundamental spin characteristics. As a result, several key assets were realized in a single solid-state qubit material under cryogenic conditions: The exclusive use of light elements (C, H, N, O), photolithographic patterning, optical spin-selective transitions, and a large zero-field splitting in the GHz regime, which, taken together, lays the ground for optically detected magnetic resonance with remarkable fluorescence contrast of >40% and record-high spin coherence times of T2 = 157(4) μs at 5 K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信