{"title":"海洋亚硫酸盐杆菌M39噬菌体介导的细胞裂解释放维生素B12。","authors":"Sabiha Sultana, Stefan Bruns, Armando Pacheco-Valenciana, Maliheh Mehrshad, Heinz Wilkes, Meinhard Simon, Sarahi Garcia, Gerrit Wienhausen","doi":"10.1093/ismeco/ycaf136","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin B<sub>12</sub> (B<sub>12</sub>) is an essential cofactor for vital metabolic processes in both prokaryotes and eukaryotes. <i>De novo</i> B<sub>12</sub> biosynthesis is exclusively carried out by a modicum of prokaryotes, although being required by most organisms. Recently, it has been demonstrated that not all B<sub>12</sub>-prototrophic bacteria voluntarily share this vital cofactor and, therefore, are termed B<sub>12</sub>-retainers. Consequently, low biosynthesis potential and limited voluntary release lead to a large discrepancy between availability and demand for B<sub>12</sub> in the ocean, indicating that release of B<sub>12</sub> may be an important control. Hence, in this study, we examined a specific release process, cell lysis after phage infection. We isolated bacteriophages specific for the B<sub>12</sub>-prototrophic, yet B<sub>12</sub>-retainer bacterium <i>Sulfitobacter</i> sp. M39. The addition of the bacteriophages to a <i>Sulfitobacter</i> sp. M39 mono-culture led to a significant increase in virus-like particles, reduced bacterial growth, and quantifiable extracellular dissolved B<sub>12</sub>. When introducing bacteriophages to a co-culture comprising the host bacterium and the B<sub>12</sub>-auxotrophic diatom <i>Thalassiosira pseudonana</i>, we observed rapid response in the form of microalgal growth. Our results indicate that B<sub>12</sub> is released as a result of bacteriophage-mediated cell lysis of <i>Sulfitobacter</i> sp. M39, enabling the growth of <i>T. pseudonana</i> in co-culture and possibly other microbes in nature. Therefore, we propose that bacteriophage-mediated cell lysis is a key mechanism for the release of essential metabolites, including vitamins, and given the estimated bacteriophage infection rates in the ocean, it plays a crucial role in the B-vitamin cycle in the marine environment.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf136"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456174/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vitamin B<sub>12</sub> release through bacteriophage-mediated cell lysis of the marine bacterium <i>Sulfitobacter</i> sp. M39.\",\"authors\":\"Sabiha Sultana, Stefan Bruns, Armando Pacheco-Valenciana, Maliheh Mehrshad, Heinz Wilkes, Meinhard Simon, Sarahi Garcia, Gerrit Wienhausen\",\"doi\":\"10.1093/ismeco/ycaf136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vitamin B<sub>12</sub> (B<sub>12</sub>) is an essential cofactor for vital metabolic processes in both prokaryotes and eukaryotes. <i>De novo</i> B<sub>12</sub> biosynthesis is exclusively carried out by a modicum of prokaryotes, although being required by most organisms. Recently, it has been demonstrated that not all B<sub>12</sub>-prototrophic bacteria voluntarily share this vital cofactor and, therefore, are termed B<sub>12</sub>-retainers. Consequently, low biosynthesis potential and limited voluntary release lead to a large discrepancy between availability and demand for B<sub>12</sub> in the ocean, indicating that release of B<sub>12</sub> may be an important control. Hence, in this study, we examined a specific release process, cell lysis after phage infection. We isolated bacteriophages specific for the B<sub>12</sub>-prototrophic, yet B<sub>12</sub>-retainer bacterium <i>Sulfitobacter</i> sp. M39. The addition of the bacteriophages to a <i>Sulfitobacter</i> sp. M39 mono-culture led to a significant increase in virus-like particles, reduced bacterial growth, and quantifiable extracellular dissolved B<sub>12</sub>. When introducing bacteriophages to a co-culture comprising the host bacterium and the B<sub>12</sub>-auxotrophic diatom <i>Thalassiosira pseudonana</i>, we observed rapid response in the form of microalgal growth. Our results indicate that B<sub>12</sub> is released as a result of bacteriophage-mediated cell lysis of <i>Sulfitobacter</i> sp. M39, enabling the growth of <i>T. pseudonana</i> in co-culture and possibly other microbes in nature. Therefore, we propose that bacteriophage-mediated cell lysis is a key mechanism for the release of essential metabolites, including vitamins, and given the estimated bacteriophage infection rates in the ocean, it plays a crucial role in the B-vitamin cycle in the marine environment.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"5 1\",\"pages\":\"ycaf136\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456174/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycaf136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Vitamin B12 release through bacteriophage-mediated cell lysis of the marine bacterium Sulfitobacter sp. M39.
Vitamin B12 (B12) is an essential cofactor for vital metabolic processes in both prokaryotes and eukaryotes. De novo B12 biosynthesis is exclusively carried out by a modicum of prokaryotes, although being required by most organisms. Recently, it has been demonstrated that not all B12-prototrophic bacteria voluntarily share this vital cofactor and, therefore, are termed B12-retainers. Consequently, low biosynthesis potential and limited voluntary release lead to a large discrepancy between availability and demand for B12 in the ocean, indicating that release of B12 may be an important control. Hence, in this study, we examined a specific release process, cell lysis after phage infection. We isolated bacteriophages specific for the B12-prototrophic, yet B12-retainer bacterium Sulfitobacter sp. M39. The addition of the bacteriophages to a Sulfitobacter sp. M39 mono-culture led to a significant increase in virus-like particles, reduced bacterial growth, and quantifiable extracellular dissolved B12. When introducing bacteriophages to a co-culture comprising the host bacterium and the B12-auxotrophic diatom Thalassiosira pseudonana, we observed rapid response in the form of microalgal growth. Our results indicate that B12 is released as a result of bacteriophage-mediated cell lysis of Sulfitobacter sp. M39, enabling the growth of T. pseudonana in co-culture and possibly other microbes in nature. Therefore, we propose that bacteriophage-mediated cell lysis is a key mechanism for the release of essential metabolites, including vitamins, and given the estimated bacteriophage infection rates in the ocean, it plays a crucial role in the B-vitamin cycle in the marine environment.