{"title":"适应度效应在适应过程中的动态分布。","authors":"Tenoch Morales, Abigail Kushnir, Lindi M. Wahl","doi":"10.1016/j.tpb.2025.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Empirical measures of the distribution of fitness effects of new mutations (the DFE) have been increasingly successful, and have recently highlighted the fact that the DFE changes during adaptation. Here, we analyze these dynamic changes to the DFE during a simplified adaptive process: an adaptive walk across an additive fitness landscape. First, we derive analytical approximations for the underlying fitness distributions of alleles present in the genotype and available through mutation and use these to derive expressions for the DFE at each step of the adaptive walk. We then confirm these predictions with independent simulations that relax several simplifying assumptions made in the analysis. As expected, our analysis predicts that as adaptation proceeds, the DFE is reshaped dynamically throughout the walk by a decrease in the beneficial fraction of mutations (a shift to the left). Surprisingly, different mechanisms drive this change depending on the number of alleles available per site: for a small number of available alleles, we observe a depletion of high-fitness alleles available through mutation as expected, however for a large number of alleles we observe that adaptation may be more limited by the availability of low-fitness alleles to be replaced, rather than by the availability of high-fitness alleles to replace them.</div></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"166 ","pages":"Pages 44-55"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of the distribution of fitness effects during adaptation\",\"authors\":\"Tenoch Morales, Abigail Kushnir, Lindi M. Wahl\",\"doi\":\"10.1016/j.tpb.2025.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Empirical measures of the distribution of fitness effects of new mutations (the DFE) have been increasingly successful, and have recently highlighted the fact that the DFE changes during adaptation. Here, we analyze these dynamic changes to the DFE during a simplified adaptive process: an adaptive walk across an additive fitness landscape. First, we derive analytical approximations for the underlying fitness distributions of alleles present in the genotype and available through mutation and use these to derive expressions for the DFE at each step of the adaptive walk. We then confirm these predictions with independent simulations that relax several simplifying assumptions made in the analysis. As expected, our analysis predicts that as adaptation proceeds, the DFE is reshaped dynamically throughout the walk by a decrease in the beneficial fraction of mutations (a shift to the left). Surprisingly, different mechanisms drive this change depending on the number of alleles available per site: for a small number of available alleles, we observe a depletion of high-fitness alleles available through mutation as expected, however for a large number of alleles we observe that adaptation may be more limited by the availability of low-fitness alleles to be replaced, rather than by the availability of high-fitness alleles to replace them.</div></div>\",\"PeriodicalId\":49437,\"journal\":{\"name\":\"Theoretical Population Biology\",\"volume\":\"166 \",\"pages\":\"Pages 44-55\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Population Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580925000619\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580925000619","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Dynamics of the distribution of fitness effects during adaptation
Empirical measures of the distribution of fitness effects of new mutations (the DFE) have been increasingly successful, and have recently highlighted the fact that the DFE changes during adaptation. Here, we analyze these dynamic changes to the DFE during a simplified adaptive process: an adaptive walk across an additive fitness landscape. First, we derive analytical approximations for the underlying fitness distributions of alleles present in the genotype and available through mutation and use these to derive expressions for the DFE at each step of the adaptive walk. We then confirm these predictions with independent simulations that relax several simplifying assumptions made in the analysis. As expected, our analysis predicts that as adaptation proceeds, the DFE is reshaped dynamically throughout the walk by a decrease in the beneficial fraction of mutations (a shift to the left). Surprisingly, different mechanisms drive this change depending on the number of alleles available per site: for a small number of available alleles, we observe a depletion of high-fitness alleles available through mutation as expected, however for a large number of alleles we observe that adaptation may be more limited by the availability of low-fitness alleles to be replaced, rather than by the availability of high-fitness alleles to replace them.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.