了解体内和硅鼻测量的不匹配。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Marco Atzori, Gabriele Dini Ciacci, Maurizio Quadrio
{"title":"了解体内和硅鼻测量的不匹配。","authors":"Marco Atzori, Gabriele Dini Ciacci, Maurizio Quadrio","doi":"10.1007/s11517-025-03450-7","DOIUrl":null,"url":null,"abstract":"<p><p>Numerical simulations and clinical measurements of nasal resistance are in quantitative disagreement. The order of magnitude of this mismatch, that sometimes exceeds 100%, is such that known sources of uncertainty cannot explain it. The goal of the present work is to examine a source of bias introduced by the design of medical devices, which has not been considered until now as a possible explanation. We study the effect of the location of the probe on the rhinomanometer that is meant to measure the ambient pressure. Rhinomanometry is carried out on a 3D silicone model of a patient-specific anatomy; a clinical device and dedicated sensors are employed side-by-side for mutual validation. The same anatomy is also employed for numerical simulations, with approaches spanning a wide range of fidelity levels. We find that the intrinsic uncertainty of the numerical simulations is of minor importance. To the contrary, the position of the pressure tap intended to acquire the external pressure in the clinical device is crucial, and can cause a mismatch comparable to that generally observed between in-silico and in-vivo rhinomanometry data. A source of systematic bias may therefore exist in rhinomanometers, designed under the assumption that measurements of the nasal resistance are unaffected by the flow development within the instruments.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the mismatch between in-vivo and in-silico rhinomanometry.\",\"authors\":\"Marco Atzori, Gabriele Dini Ciacci, Maurizio Quadrio\",\"doi\":\"10.1007/s11517-025-03450-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerical simulations and clinical measurements of nasal resistance are in quantitative disagreement. The order of magnitude of this mismatch, that sometimes exceeds 100%, is such that known sources of uncertainty cannot explain it. The goal of the present work is to examine a source of bias introduced by the design of medical devices, which has not been considered until now as a possible explanation. We study the effect of the location of the probe on the rhinomanometer that is meant to measure the ambient pressure. Rhinomanometry is carried out on a 3D silicone model of a patient-specific anatomy; a clinical device and dedicated sensors are employed side-by-side for mutual validation. The same anatomy is also employed for numerical simulations, with approaches spanning a wide range of fidelity levels. We find that the intrinsic uncertainty of the numerical simulations is of minor importance. To the contrary, the position of the pressure tap intended to acquire the external pressure in the clinical device is crucial, and can cause a mismatch comparable to that generally observed between in-silico and in-vivo rhinomanometry data. A source of systematic bias may therefore exist in rhinomanometers, designed under the assumption that measurements of the nasal resistance are unaffected by the flow development within the instruments.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03450-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03450-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

鼻阻力的数值模拟和临床测量结果在定量上存在分歧。这种不匹配的数量级有时超过100%,以至于已知的不确定性来源无法解释它。目前工作的目标是检查由医疗设备的设计引入的偏见的来源,这还没有被认为是一个可能的解释,直到现在。我们研究了探头的位置对用于测量环境压力的鼻压计的影响。鼻压测量是在患者特定解剖结构的3D硅胶模型上进行的;临床设备和专用传感器并排使用,以进行相互验证。同样的解剖结构也用于数值模拟,方法跨越了广泛的保真度水平。我们发现数值模拟的内在不确定性是次要的。相反,用于在临床设备中获取外部压力的压力水龙头的位置是至关重要的,并且可能导致不匹配,可与通常在计算机和体内鼻测数据之间观察到的不匹配相媲美。因此,在假设鼻阻力测量不受仪器内部流动发展影响的情况下,鼻压力计可能存在系统性偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the mismatch between in-vivo and in-silico rhinomanometry.

Numerical simulations and clinical measurements of nasal resistance are in quantitative disagreement. The order of magnitude of this mismatch, that sometimes exceeds 100%, is such that known sources of uncertainty cannot explain it. The goal of the present work is to examine a source of bias introduced by the design of medical devices, which has not been considered until now as a possible explanation. We study the effect of the location of the probe on the rhinomanometer that is meant to measure the ambient pressure. Rhinomanometry is carried out on a 3D silicone model of a patient-specific anatomy; a clinical device and dedicated sensors are employed side-by-side for mutual validation. The same anatomy is also employed for numerical simulations, with approaches spanning a wide range of fidelity levels. We find that the intrinsic uncertainty of the numerical simulations is of minor importance. To the contrary, the position of the pressure tap intended to acquire the external pressure in the clinical device is crucial, and can cause a mismatch comparable to that generally observed between in-silico and in-vivo rhinomanometry data. A source of systematic bias may therefore exist in rhinomanometers, designed under the assumption that measurements of the nasal resistance are unaffected by the flow development within the instruments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信