SAFNet:用于双域欠采样MRI重建的空间自适应融合网络。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Yingjie Huo, Hongyuan Zhang, Dan Ge, Ziliang Ren
{"title":"SAFNet:用于双域欠采样MRI重建的空间自适应融合网络。","authors":"Yingjie Huo, Hongyuan Zhang, Dan Ge, Ziliang Ren","doi":"10.1007/s13246-025-01628-9","DOIUrl":null,"url":null,"abstract":"<p><p>Undersampled magnetic resonance imaging (MRI) reconstruction reduces scanning time while preserving image quality, improving patient comfort and clinical efficiency. Current parallel reconstruction strategies leverage k-space and image domains information to improve feature extraction and accuracy. However, most existing dual-domain reconstruction methods rely on simplistic fusion strategies that ignore spatial feature variations, suffer from constrained receptive fields limiting complex anatomical structure modeling, and employ static frameworks lacking adaptability to the heterogeneous artifact profiles induced by diverse undersampling patterns. This paper introduces a Spatial Adaptive Fusion Network (SAFNet) for dual-domain undersampled MRI reconstruction. SAFNet comprises two parallel reconstruction branches. A Dynamic Perception Initialization Module (DPIM) in each encoder enriches receptive fields for multi-scale information capture. Spatial Adaptive Fusion Modules (SAFM) within each branch's decoder achieve pixel-wise adaptive fusion of dual-domain features and incorporate original magnitude information, ensuring faithful preservation of intensity details. The Weighted Shortcut Module (WSM) enables dynamic strategy adaptation by scaling shortcut connections to adaptively balance residual learning and direct reconstruction. Experiments demonstrate SAFNet's superior accuracy and adaptability over state-of-the-art methods, offering valuable insights for image reconstruction and multimodal information fusion.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAFNet: a spatial adaptive fusion network for dual-domain undersampled MRI reconstruction.\",\"authors\":\"Yingjie Huo, Hongyuan Zhang, Dan Ge, Ziliang Ren\",\"doi\":\"10.1007/s13246-025-01628-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Undersampled magnetic resonance imaging (MRI) reconstruction reduces scanning time while preserving image quality, improving patient comfort and clinical efficiency. Current parallel reconstruction strategies leverage k-space and image domains information to improve feature extraction and accuracy. However, most existing dual-domain reconstruction methods rely on simplistic fusion strategies that ignore spatial feature variations, suffer from constrained receptive fields limiting complex anatomical structure modeling, and employ static frameworks lacking adaptability to the heterogeneous artifact profiles induced by diverse undersampling patterns. This paper introduces a Spatial Adaptive Fusion Network (SAFNet) for dual-domain undersampled MRI reconstruction. SAFNet comprises two parallel reconstruction branches. A Dynamic Perception Initialization Module (DPIM) in each encoder enriches receptive fields for multi-scale information capture. Spatial Adaptive Fusion Modules (SAFM) within each branch's decoder achieve pixel-wise adaptive fusion of dual-domain features and incorporate original magnitude information, ensuring faithful preservation of intensity details. The Weighted Shortcut Module (WSM) enables dynamic strategy adaptation by scaling shortcut connections to adaptively balance residual learning and direct reconstruction. Experiments demonstrate SAFNet's superior accuracy and adaptability over state-of-the-art methods, offering valuable insights for image reconstruction and multimodal information fusion.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01628-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01628-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

欠采样磁共振成像(MRI)重建减少扫描时间,同时保持图像质量,提高患者舒适度和临床效率。当前的并行重建策略利用k空间和图像域信息来提高特征提取和准确性。然而,大多数现有的双域重建方法依赖于简单的融合策略,忽略了空间特征的变化,受约束的接受野限制了复杂的解剖结构建模,并且采用静态框架,缺乏对不同欠采样模式引起的异质伪影轮廓的适应性。介绍了一种用于双域欠采样MRI重建的空间自适应融合网络(SAFNet)。SAFNet包括两个并行的重建分支。每个编码器中的动态感知初始化模块(DPIM)丰富了多尺度信息捕获的接收域。每个分支解码器中的空间自适应融合模块(SAFM)实现双域特征的逐像素自适应融合,并结合原始幅度信息,确保忠实地保留强度细节。加权快捷模块(Weighted Shortcut Module, WSM)通过扩展快捷连接,自适应平衡残差学习和直接重构,实现动态策略适应。实验表明,SAFNet的精度和适应性优于最先进的方法,为图像重建和多模态信息融合提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAFNet: a spatial adaptive fusion network for dual-domain undersampled MRI reconstruction.

Undersampled magnetic resonance imaging (MRI) reconstruction reduces scanning time while preserving image quality, improving patient comfort and clinical efficiency. Current parallel reconstruction strategies leverage k-space and image domains information to improve feature extraction and accuracy. However, most existing dual-domain reconstruction methods rely on simplistic fusion strategies that ignore spatial feature variations, suffer from constrained receptive fields limiting complex anatomical structure modeling, and employ static frameworks lacking adaptability to the heterogeneous artifact profiles induced by diverse undersampling patterns. This paper introduces a Spatial Adaptive Fusion Network (SAFNet) for dual-domain undersampled MRI reconstruction. SAFNet comprises two parallel reconstruction branches. A Dynamic Perception Initialization Module (DPIM) in each encoder enriches receptive fields for multi-scale information capture. Spatial Adaptive Fusion Modules (SAFM) within each branch's decoder achieve pixel-wise adaptive fusion of dual-domain features and incorporate original magnitude information, ensuring faithful preservation of intensity details. The Weighted Shortcut Module (WSM) enables dynamic strategy adaptation by scaling shortcut connections to adaptively balance residual learning and direct reconstruction. Experiments demonstrate SAFNet's superior accuracy and adaptability over state-of-the-art methods, offering valuable insights for image reconstruction and multimodal information fusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信