{"title":"利用电子病历数据和最新的临床指南,高度准确和实用的临床糖尿病药物和剂量推荐系统。","authors":"Jhing-Fa Wang, Ming-Jun Wei, Te-Ming Chiang, Tzu-Chun Yeh, Eric Cheng, Yuan-Teh Lee, Hong-I Chen","doi":"10.1055/a-2707-2862","DOIUrl":null,"url":null,"abstract":"<p><p>Existing drug recommendation systems lack integration with up-to-date clinical guidelines (the latest diabetes association standards of care and clinical guidelines that align with local government health care regulations) and lack high-precision drug interaction processing, explainability, and dynamic dosage adjustment. As a result, the recommendations generated by these systems are often inaccurate and do not align with local standards, greatly limiting their practicality.To develop a personalized drug recommendation and dosage optimization system named Diabetes Drug Recommendation System (DDRs), integrating Fast Healthcare Interoperability Resources-standardized electronic health record (EHR) data and up-to-date clinical guidelines for accurate and practical recommendations.We analyzed patients' EHR and International Classification of Diseases-tenth edition codes and integrated them with a drug interaction database to reduce adverse reactions. ADA guidelines and Taiwan's National Health Insurance (NHI) chronic disease guidelines served as data sources. Bio-GPT and Retrieval-Augmented Generation (RAG) were used to build the clinical guideline database and ensure recommendations align with the latest standards, with references provided for interpretability. Finally, optimal dosage was dynamically calculated by integrating patient disease progression trends from the EHR.DDRs achieved superior drug recommendation accuracy (Precision-Recall Area Under the Curve = 0.7951, Jaccard = 0.5632, F1-score = 0.7158), with a low drug-drug interaction rate (4.73%) and dosage error (±6.21%). Faithfulness of recommendations reached 0.850. Field validation with three physicians showed that the system reduced literature review time by 30 to 40% and delivered clinically actionable recommendations.DDRs is the first system to integrate EHR data, LLMs, RAG, ADA guidelines, and Taiwan NHI policies for diabetes treatment. The system demonstrates high accuracy, safety, and interpretability, offering practical decision support in routine clinical settings.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Electronic Health Record Data and Up-to-Date Clinical Guidelines for High-Accuracy Clinical Diabetes Drug and Dosage Recommendation.\",\"authors\":\"Jhing-Fa Wang, Ming-Jun Wei, Te-Ming Chiang, Tzu-Chun Yeh, Eric Cheng, Yuan-Teh Lee, Hong-I Chen\",\"doi\":\"10.1055/a-2707-2862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing drug recommendation systems lack integration with up-to-date clinical guidelines (the latest diabetes association standards of care and clinical guidelines that align with local government health care regulations) and lack high-precision drug interaction processing, explainability, and dynamic dosage adjustment. As a result, the recommendations generated by these systems are often inaccurate and do not align with local standards, greatly limiting their practicality.To develop a personalized drug recommendation and dosage optimization system named Diabetes Drug Recommendation System (DDRs), integrating Fast Healthcare Interoperability Resources-standardized electronic health record (EHR) data and up-to-date clinical guidelines for accurate and practical recommendations.We analyzed patients' EHR and International Classification of Diseases-tenth edition codes and integrated them with a drug interaction database to reduce adverse reactions. ADA guidelines and Taiwan's National Health Insurance (NHI) chronic disease guidelines served as data sources. Bio-GPT and Retrieval-Augmented Generation (RAG) were used to build the clinical guideline database and ensure recommendations align with the latest standards, with references provided for interpretability. Finally, optimal dosage was dynamically calculated by integrating patient disease progression trends from the EHR.DDRs achieved superior drug recommendation accuracy (Precision-Recall Area Under the Curve = 0.7951, Jaccard = 0.5632, F1-score = 0.7158), with a low drug-drug interaction rate (4.73%) and dosage error (±6.21%). Faithfulness of recommendations reached 0.850. Field validation with three physicians showed that the system reduced literature review time by 30 to 40% and delivered clinically actionable recommendations.DDRs is the first system to integrate EHR data, LLMs, RAG, ADA guidelines, and Taiwan NHI policies for diabetes treatment. The system demonstrates high accuracy, safety, and interpretability, offering practical decision support in routine clinical settings.</p>\",\"PeriodicalId\":49822,\"journal\":{\"name\":\"Methods of Information in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Information in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2707-2862\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2707-2862","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Leveraging Electronic Health Record Data and Up-to-Date Clinical Guidelines for High-Accuracy Clinical Diabetes Drug and Dosage Recommendation.
Existing drug recommendation systems lack integration with up-to-date clinical guidelines (the latest diabetes association standards of care and clinical guidelines that align with local government health care regulations) and lack high-precision drug interaction processing, explainability, and dynamic dosage adjustment. As a result, the recommendations generated by these systems are often inaccurate and do not align with local standards, greatly limiting their practicality.To develop a personalized drug recommendation and dosage optimization system named Diabetes Drug Recommendation System (DDRs), integrating Fast Healthcare Interoperability Resources-standardized electronic health record (EHR) data and up-to-date clinical guidelines for accurate and practical recommendations.We analyzed patients' EHR and International Classification of Diseases-tenth edition codes and integrated them with a drug interaction database to reduce adverse reactions. ADA guidelines and Taiwan's National Health Insurance (NHI) chronic disease guidelines served as data sources. Bio-GPT and Retrieval-Augmented Generation (RAG) were used to build the clinical guideline database and ensure recommendations align with the latest standards, with references provided for interpretability. Finally, optimal dosage was dynamically calculated by integrating patient disease progression trends from the EHR.DDRs achieved superior drug recommendation accuracy (Precision-Recall Area Under the Curve = 0.7951, Jaccard = 0.5632, F1-score = 0.7158), with a low drug-drug interaction rate (4.73%) and dosage error (±6.21%). Faithfulness of recommendations reached 0.850. Field validation with three physicians showed that the system reduced literature review time by 30 to 40% and delivered clinically actionable recommendations.DDRs is the first system to integrate EHR data, LLMs, RAG, ADA guidelines, and Taiwan NHI policies for diabetes treatment. The system demonstrates high accuracy, safety, and interpretability, offering practical decision support in routine clinical settings.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.