Jiahang Li, Martin Brenner, Iro Pierides, Barbara Wessner, Bernhard Franzke, Eva-Maria Strasser, Steffen Waldherr, Karl-Heinz Wagner, Wolfram Weckwerth
{"title":"机器学习和数据驱动的代谢组学逆建模揭示了活跃衰老的关键过程。","authors":"Jiahang Li, Martin Brenner, Iro Pierides, Barbara Wessner, Bernhard Franzke, Eva-Maria Strasser, Steffen Waldherr, Karl-Heinz Wagner, Wolfram Weckwerth","doi":"10.1038/s41540-025-00580-4","DOIUrl":null,"url":null,"abstract":"<p><p>Physical inactivity and low fitness have become global health concerns. Metabolomics, as an integrative approach, may link fitness to molecular changes. In this study, we analyzed blood metabolomes from elderly individuals under different treatments. By defining two fitness groups and their corresponding metabolite profiles, we applied several machine learning classifiers to identify key metabolite biomarkers. Aspartate consistently emerged as a dominant fitness marker. We further defined a body activity index (BAI) and analyzed two cohorts with high and low BAI using COVRECON, a novel method for metabolic network interaction analysis. COVRECON identifies causal molecular dynamics in multiomics data. Aspartate-amino-transferase (AST) was among the dominant processes distinguishing the groups. Routine blood tests confirmed significant differences in AST and ALT. Aspartate is also a known biomarker in dementia, related to physical fitness. In summary, we combine machine learning and COVRECON to identify metabolic biomarkers and molecular dynamics supporting active aging.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"103"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460594/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning and data-driven inverse modeling of metabolomics unveil key processes of active aging.\",\"authors\":\"Jiahang Li, Martin Brenner, Iro Pierides, Barbara Wessner, Bernhard Franzke, Eva-Maria Strasser, Steffen Waldherr, Karl-Heinz Wagner, Wolfram Weckwerth\",\"doi\":\"10.1038/s41540-025-00580-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physical inactivity and low fitness have become global health concerns. Metabolomics, as an integrative approach, may link fitness to molecular changes. In this study, we analyzed blood metabolomes from elderly individuals under different treatments. By defining two fitness groups and their corresponding metabolite profiles, we applied several machine learning classifiers to identify key metabolite biomarkers. Aspartate consistently emerged as a dominant fitness marker. We further defined a body activity index (BAI) and analyzed two cohorts with high and low BAI using COVRECON, a novel method for metabolic network interaction analysis. COVRECON identifies causal molecular dynamics in multiomics data. Aspartate-amino-transferase (AST) was among the dominant processes distinguishing the groups. Routine blood tests confirmed significant differences in AST and ALT. Aspartate is also a known biomarker in dementia, related to physical fitness. In summary, we combine machine learning and COVRECON to identify metabolic biomarkers and molecular dynamics supporting active aging.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"103\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460594/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00580-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00580-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Machine learning and data-driven inverse modeling of metabolomics unveil key processes of active aging.
Physical inactivity and low fitness have become global health concerns. Metabolomics, as an integrative approach, may link fitness to molecular changes. In this study, we analyzed blood metabolomes from elderly individuals under different treatments. By defining two fitness groups and their corresponding metabolite profiles, we applied several machine learning classifiers to identify key metabolite biomarkers. Aspartate consistently emerged as a dominant fitness marker. We further defined a body activity index (BAI) and analyzed two cohorts with high and low BAI using COVRECON, a novel method for metabolic network interaction analysis. COVRECON identifies causal molecular dynamics in multiomics data. Aspartate-amino-transferase (AST) was among the dominant processes distinguishing the groups. Routine blood tests confirmed significant differences in AST and ALT. Aspartate is also a known biomarker in dementia, related to physical fitness. In summary, we combine machine learning and COVRECON to identify metabolic biomarkers and molecular dynamics supporting active aging.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.