Bandar R Alsehli, Abdullah H Alluhayb, Lateefa A Al-Khateeb, Sayed M Saleh, Ammena Y Binsaleh, Mahmoud A Mohamed
{"title":"使用DoE和可持续性指标同时测定环戊酸酯和有机杂质的绿色RP-UPLC方法。","authors":"Bandar R Alsehli, Abdullah H Alluhayb, Lateefa A Al-Khateeb, Sayed M Saleh, Ammena Y Binsaleh, Mahmoud A Mohamed","doi":"10.1155/ianc/8827373","DOIUrl":null,"url":null,"abstract":"<p><p>A significant improvement in sustainability and efficiency is achievable through green and white chemistry. As part of this study, sustainability assessment tools were used to assess the environmental impact and practicality of an innovative, straightforward RP-UPLC method to analyze cyclopentolate (CLO) and its organic impurities simultaneously in pure and ophthalmic solutions at the same time. An optimization strategy based on Box-Behnken design was employed to minimize experimental runs while optimizing chromatographic conditions. Using this design, four critical variables were evaluated comprehensively-ethanol percentage in the mobile phase, pH, column temperature, and flow rate-on chromatographic responses such as retention time, resolution between CLO and impurity, and theoretical plate count. As a result of desirable and overlay plots, an optimal condition was selected: 65:25, v/v, ethanol and buffer, pH 4.25, 0.3 mL/min flow rate, and 4°C and 25°C sample and column oven temperatures, respectively, and the main peak retained for a little more than 3 min. The calibration curves for CLO and impurities at concentrations from 5 to 50 μg/mL and 1 to 20 μg/mL showed a correlation value of 0.9998. Recoveries are ±15% of the actual amounts, which is acceptable. RP-UPLC has been extensively designed for the coincidental estimation of anticholinergic drugs and their impurities. A combination of white and green tools was used to assess the method's environmental impact. ICH guidelines have been followed to validate the suggested strategy. This approach offers a reliable, fast, and eco-friendly solution for routine pharmaceutical quality control of anticholinergic agents.</p>","PeriodicalId":13888,"journal":{"name":"International Journal of Analytical Chemistry","volume":"2025 ","pages":"8827373"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457066/pdf/","citationCount":"0","resultStr":"{\"title\":\"Green RP-UPLC Method for Simultaneous Determination of Cyclopentolate and Organic Impurities Using DoE and Sustainability Metrics.\",\"authors\":\"Bandar R Alsehli, Abdullah H Alluhayb, Lateefa A Al-Khateeb, Sayed M Saleh, Ammena Y Binsaleh, Mahmoud A Mohamed\",\"doi\":\"10.1155/ianc/8827373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A significant improvement in sustainability and efficiency is achievable through green and white chemistry. As part of this study, sustainability assessment tools were used to assess the environmental impact and practicality of an innovative, straightforward RP-UPLC method to analyze cyclopentolate (CLO) and its organic impurities simultaneously in pure and ophthalmic solutions at the same time. An optimization strategy based on Box-Behnken design was employed to minimize experimental runs while optimizing chromatographic conditions. Using this design, four critical variables were evaluated comprehensively-ethanol percentage in the mobile phase, pH, column temperature, and flow rate-on chromatographic responses such as retention time, resolution between CLO and impurity, and theoretical plate count. As a result of desirable and overlay plots, an optimal condition was selected: 65:25, v/v, ethanol and buffer, pH 4.25, 0.3 mL/min flow rate, and 4°C and 25°C sample and column oven temperatures, respectively, and the main peak retained for a little more than 3 min. The calibration curves for CLO and impurities at concentrations from 5 to 50 μg/mL and 1 to 20 μg/mL showed a correlation value of 0.9998. Recoveries are ±15% of the actual amounts, which is acceptable. RP-UPLC has been extensively designed for the coincidental estimation of anticholinergic drugs and their impurities. A combination of white and green tools was used to assess the method's environmental impact. ICH guidelines have been followed to validate the suggested strategy. This approach offers a reliable, fast, and eco-friendly solution for routine pharmaceutical quality control of anticholinergic agents.</p>\",\"PeriodicalId\":13888,\"journal\":{\"name\":\"International Journal of Analytical Chemistry\",\"volume\":\"2025 \",\"pages\":\"8827373\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457066/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/ianc/8827373\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/ianc/8827373","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Green RP-UPLC Method for Simultaneous Determination of Cyclopentolate and Organic Impurities Using DoE and Sustainability Metrics.
A significant improvement in sustainability and efficiency is achievable through green and white chemistry. As part of this study, sustainability assessment tools were used to assess the environmental impact and practicality of an innovative, straightforward RP-UPLC method to analyze cyclopentolate (CLO) and its organic impurities simultaneously in pure and ophthalmic solutions at the same time. An optimization strategy based on Box-Behnken design was employed to minimize experimental runs while optimizing chromatographic conditions. Using this design, four critical variables were evaluated comprehensively-ethanol percentage in the mobile phase, pH, column temperature, and flow rate-on chromatographic responses such as retention time, resolution between CLO and impurity, and theoretical plate count. As a result of desirable and overlay plots, an optimal condition was selected: 65:25, v/v, ethanol and buffer, pH 4.25, 0.3 mL/min flow rate, and 4°C and 25°C sample and column oven temperatures, respectively, and the main peak retained for a little more than 3 min. The calibration curves for CLO and impurities at concentrations from 5 to 50 μg/mL and 1 to 20 μg/mL showed a correlation value of 0.9998. Recoveries are ±15% of the actual amounts, which is acceptable. RP-UPLC has been extensively designed for the coincidental estimation of anticholinergic drugs and their impurities. A combination of white and green tools was used to assess the method's environmental impact. ICH guidelines have been followed to validate the suggested strategy. This approach offers a reliable, fast, and eco-friendly solution for routine pharmaceutical quality control of anticholinergic agents.
期刊介绍:
International Journal of Analytical Chemistry publishes original research articles that report new experimental results and methods, especially in relation to important analytes, difficult matrices, and topical samples. Investigations may be fundamental, or else related to specific applications; examples being biological, environmental and food testing, and analysis in chemical synthesis and materials processing.
As well as original research, the International Journal of Analytical Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.