ScLineageAtlas:一个全面的单细胞基因组数据库,用于表征癌症中的细胞克隆。

IF 3.6 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Jinyang Liu, Rui Hou, Junlin Xu, Tingting Hui, Haotian Tian, Yankun Liu, Meijun Zhang, Geng Tian, Jialiang Yang
{"title":"ScLineageAtlas:一个全面的单细胞基因组数据库,用于表征癌症中的细胞克隆。","authors":"Jinyang Liu, Rui Hou, Junlin Xu, Tingting Hui, Haotian Tian, Yankun Liu, Meijun Zhang, Geng Tian, Jialiang Yang","doi":"10.1093/database/baaf046","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of clonal relationships between cell populations is crucial for investigating cellular differentiation trajectories and gaining insights into the underlying mechanisms of cancer initiation and development. The Single Cell Lineage Atlas (ScLineageAtlas; https://www.scladb.geneis.org.cn) is a comprehensive single-cell genomics database that characterizes cellular clones across various cancer types. The database currently includes 24 processed single-cell RNA sequencing datasets spanning 13 different cancer types. ScLineageAtlas leverages advanced computational methods to identify cellular clones, providing researchers with a detailed understanding of clone relationships and evolutionary dynamics. Additionally, the database offers comprehensive metadata for each sample, enabling researchers to explore contextual information and sample characteristics. The spatial visualization of cell clones presented in the ScLineageAtlas provides a valuable tool for enhancing our understanding of the genetic heterogeneity within the tumour microenvironment. Through the analysis of biological differences between these diverse cell populations, researchers can explore key genes and signalling pathways associated with cancer initiation, development, and therapeutic efficacy. In summary, the ScLineageAtlas serves as a user-friendly platform for data operations on cellular clones, facilitating the understanding of tumour heterogeneity, differentiation trajectories, and evolution. It thus contributes significantly to cancer research and clinical practice.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2025 ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462628/pdf/","citationCount":"0","resultStr":"{\"title\":\"ScLineageAtlas: a comprehensive single-cell genomics database for characterizing cellular clones in cancer.\",\"authors\":\"Jinyang Liu, Rui Hou, Junlin Xu, Tingting Hui, Haotian Tian, Yankun Liu, Meijun Zhang, Geng Tian, Jialiang Yang\",\"doi\":\"10.1093/database/baaf046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate identification of clonal relationships between cell populations is crucial for investigating cellular differentiation trajectories and gaining insights into the underlying mechanisms of cancer initiation and development. The Single Cell Lineage Atlas (ScLineageAtlas; https://www.scladb.geneis.org.cn) is a comprehensive single-cell genomics database that characterizes cellular clones across various cancer types. The database currently includes 24 processed single-cell RNA sequencing datasets spanning 13 different cancer types. ScLineageAtlas leverages advanced computational methods to identify cellular clones, providing researchers with a detailed understanding of clone relationships and evolutionary dynamics. Additionally, the database offers comprehensive metadata for each sample, enabling researchers to explore contextual information and sample characteristics. The spatial visualization of cell clones presented in the ScLineageAtlas provides a valuable tool for enhancing our understanding of the genetic heterogeneity within the tumour microenvironment. Through the analysis of biological differences between these diverse cell populations, researchers can explore key genes and signalling pathways associated with cancer initiation, development, and therapeutic efficacy. In summary, the ScLineageAtlas serves as a user-friendly platform for data operations on cellular clones, facilitating the understanding of tumour heterogeneity, differentiation trajectories, and evolution. It thus contributes significantly to cancer research and clinical practice.</p>\",\"PeriodicalId\":10923,\"journal\":{\"name\":\"Database: The Journal of Biological Databases and Curation\",\"volume\":\"2025 \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database: The Journal of Biological Databases and Curation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baaf046\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baaf046","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

准确识别细胞群之间的克隆关系对于研究细胞分化轨迹和深入了解癌症发生和发展的潜在机制至关重要。单细胞谱系图谱(ScLineageAtlas; https://www.scladb.geneis.org.cn)是一个全面的单细胞基因组学数据库,具有各种癌症类型的细胞克隆特征。该数据库目前包括24个经过处理的单细胞RNA测序数据集,涵盖13种不同的癌症类型。ScLineageAtlas利用先进的计算方法来识别细胞克隆,为研究人员提供克隆关系和进化动力学的详细了解。此外,该数据库为每个样本提供了全面的元数据,使研究人员能够探索上下文信息和样本特征。在ScLineageAtlas中呈现的细胞克隆的空间可视化为增强我们对肿瘤微环境中遗传异质性的理解提供了一个有价值的工具。通过分析这些不同细胞群之间的生物学差异,研究人员可以探索与癌症发生、发展和治疗效果相关的关键基因和信号通路。总之,ScLineageAtlas是一个用户友好的细胞克隆数据操作平台,有助于了解肿瘤异质性、分化轨迹和进化。因此,它为癌症研究和临床实践做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ScLineageAtlas: a comprehensive single-cell genomics database for characterizing cellular clones in cancer.

ScLineageAtlas: a comprehensive single-cell genomics database for characterizing cellular clones in cancer.

ScLineageAtlas: a comprehensive single-cell genomics database for characterizing cellular clones in cancer.

ScLineageAtlas: a comprehensive single-cell genomics database for characterizing cellular clones in cancer.

Accurate identification of clonal relationships between cell populations is crucial for investigating cellular differentiation trajectories and gaining insights into the underlying mechanisms of cancer initiation and development. The Single Cell Lineage Atlas (ScLineageAtlas; https://www.scladb.geneis.org.cn) is a comprehensive single-cell genomics database that characterizes cellular clones across various cancer types. The database currently includes 24 processed single-cell RNA sequencing datasets spanning 13 different cancer types. ScLineageAtlas leverages advanced computational methods to identify cellular clones, providing researchers with a detailed understanding of clone relationships and evolutionary dynamics. Additionally, the database offers comprehensive metadata for each sample, enabling researchers to explore contextual information and sample characteristics. The spatial visualization of cell clones presented in the ScLineageAtlas provides a valuable tool for enhancing our understanding of the genetic heterogeneity within the tumour microenvironment. Through the analysis of biological differences between these diverse cell populations, researchers can explore key genes and signalling pathways associated with cancer initiation, development, and therapeutic efficacy. In summary, the ScLineageAtlas serves as a user-friendly platform for data operations on cellular clones, facilitating the understanding of tumour heterogeneity, differentiation trajectories, and evolution. It thus contributes significantly to cancer research and clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信