东莨菪素通过减弱NF-κB/MMP-9介导的炎症和激活Nrf2通路来保护结肠屏障的完整性,从而减轻dss诱导的溃疡性结肠炎。

IF 4.2 4区 医学 Q2 CHEMISTRY, MEDICINAL
A Gowtham, Tushar Mishra, Tarh Gungha, Ravinder K. Kaundal
{"title":"东莨菪素通过减弱NF-κB/MMP-9介导的炎症和激活Nrf2通路来保护结肠屏障的完整性,从而减轻dss诱导的溃疡性结肠炎。","authors":"A Gowtham,&nbsp;Tushar Mishra,&nbsp;Tarh Gungha,&nbsp;Ravinder K. Kaundal","doi":"10.1002/ddr.70165","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, characterized by persistent mucosal inflammation and epithelial barrier disruption. This study investigated the therapeutic efficacy of Scopoletin, a natural coumarin derivative with established anti-inflammatory and antioxidant properties, in a DSS-induced colitis model in Balb/c mice. A total of five experimental groups were established: a normal control, a DSS+ vehicle group, two Scopoletin-treated groups (10 and 30 mg/kg), and a reference group treated with Sulfasalazine (200 mg/kg). Network pharmacology analyses identified key inflammatory and immune-regulatory pathways potentially modulated by Scopoletin. <i>In vivo</i> assessments encompassed body weight monitoring, DAI scoring, colon length measurement, and histopathological evaluation using H&amp;E, PAS, and Alcian blue staining. Scopoletin (30 mg/kg) treatment significantly ameliorated clinical and histological manifestations of colitis, including body weight loss and colonic shortening. Mechanistically, Scopoletin (30 mg/kg) attenuated the expression of pro-inflammatory cytokines such as TNF-α and IL-1β, suppressed NF-κB activation, MMP-9, COX-2 and enhanced the Nrf2 expression, leading to upregulation of antioxidant enzymes HO-1 and NQO1. Notably, Scopoletin (30 mg/kg) restored the expression of tight junction proteins such as Occludin and ZO-1, indicating reinforcement of epithelial barrier integrity. These findings demonstrated that Scopoletin protects against UC by suppressing inflammation, enhancing antioxidant defenses, and preserving mucosal barrier integrity, highlighting its potential as a therapeutic candidate for UC.</p></div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 7","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scopoletin Mitigates DSS-Induced Ulcerative Colitis by Attenuating NF-κB/MMP-9 Mediated Inflammation and Activating the Nrf2 Pathway to Preserve Colonic Barrier Integrity\",\"authors\":\"A Gowtham,&nbsp;Tushar Mishra,&nbsp;Tarh Gungha,&nbsp;Ravinder K. Kaundal\",\"doi\":\"10.1002/ddr.70165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, characterized by persistent mucosal inflammation and epithelial barrier disruption. This study investigated the therapeutic efficacy of Scopoletin, a natural coumarin derivative with established anti-inflammatory and antioxidant properties, in a DSS-induced colitis model in Balb/c mice. A total of five experimental groups were established: a normal control, a DSS+ vehicle group, two Scopoletin-treated groups (10 and 30 mg/kg), and a reference group treated with Sulfasalazine (200 mg/kg). Network pharmacology analyses identified key inflammatory and immune-regulatory pathways potentially modulated by Scopoletin. <i>In vivo</i> assessments encompassed body weight monitoring, DAI scoring, colon length measurement, and histopathological evaluation using H&amp;E, PAS, and Alcian blue staining. Scopoletin (30 mg/kg) treatment significantly ameliorated clinical and histological manifestations of colitis, including body weight loss and colonic shortening. Mechanistically, Scopoletin (30 mg/kg) attenuated the expression of pro-inflammatory cytokines such as TNF-α and IL-1β, suppressed NF-κB activation, MMP-9, COX-2 and enhanced the Nrf2 expression, leading to upregulation of antioxidant enzymes HO-1 and NQO1. Notably, Scopoletin (30 mg/kg) restored the expression of tight junction proteins such as Occludin and ZO-1, indicating reinforcement of epithelial barrier integrity. These findings demonstrated that Scopoletin protects against UC by suppressing inflammation, enhancing antioxidant defenses, and preserving mucosal barrier integrity, highlighting its potential as a therapeutic candidate for UC.</p></div>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"86 7\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/ddr.70165\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/ddr.70165","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

溃疡性结肠炎(UC)是一种慢性结肠炎症性疾病,其特征是持续的粘膜炎症和上皮屏障破坏。本研究探讨了具有抗炎和抗氧化特性的天然香豆素衍生物东莨菪碱对dss诱导的Balb/c小鼠结肠炎模型的治疗效果。共设5个实验组:正常对照组、DSS+载药组、东莨菪碱处理组(10、30 mg/kg)和柳氮磺胺嘧啶处理组(200 mg/kg)。网络药理学分析确定了关键的炎症和免疫调节途径可能由东莨菪碱调节。体内评估包括体重监测、DAI评分、结肠长度测量和H&E、PAS和阿利新蓝染色的组织病理学评估。东莨菪碱(30 mg/kg)治疗可显著改善结肠炎的临床和组织学表现,包括体重减轻和结肠缩短。机制上,东莨菪素(30 mg/kg)可降低促炎因子TNF-α、IL-1β的表达,抑制NF-κB、MMP-9、COX-2的活化,增强Nrf2的表达,导致抗氧化酶HO-1和NQO1的上调。值得注意的是,东莨菪碱(30 mg/kg)恢复了紧密连接蛋白(如Occludin和ZO-1)的表达,表明上皮屏障完整性得到增强。这些发现表明东莨菪碱通过抑制炎症、增强抗氧化防御和保持粘膜屏障完整性来预防UC,突出了其作为UC治疗候选药物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scopoletin Mitigates DSS-Induced Ulcerative Colitis by Attenuating NF-κB/MMP-9 Mediated Inflammation and Activating the Nrf2 Pathway to Preserve Colonic Barrier Integrity

Scopoletin Mitigates DSS-Induced Ulcerative Colitis by Attenuating NF-κB/MMP-9 Mediated Inflammation and Activating the Nrf2 Pathway to Preserve Colonic Barrier Integrity

Scopoletin Mitigates DSS-Induced Ulcerative Colitis by Attenuating NF-κB/MMP-9 Mediated Inflammation and Activating the Nrf2 Pathway to Preserve Colonic Barrier Integrity

Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, characterized by persistent mucosal inflammation and epithelial barrier disruption. This study investigated the therapeutic efficacy of Scopoletin, a natural coumarin derivative with established anti-inflammatory and antioxidant properties, in a DSS-induced colitis model in Balb/c mice. A total of five experimental groups were established: a normal control, a DSS+ vehicle group, two Scopoletin-treated groups (10 and 30 mg/kg), and a reference group treated with Sulfasalazine (200 mg/kg). Network pharmacology analyses identified key inflammatory and immune-regulatory pathways potentially modulated by Scopoletin. In vivo assessments encompassed body weight monitoring, DAI scoring, colon length measurement, and histopathological evaluation using H&E, PAS, and Alcian blue staining. Scopoletin (30 mg/kg) treatment significantly ameliorated clinical and histological manifestations of colitis, including body weight loss and colonic shortening. Mechanistically, Scopoletin (30 mg/kg) attenuated the expression of pro-inflammatory cytokines such as TNF-α and IL-1β, suppressed NF-κB activation, MMP-9, COX-2 and enhanced the Nrf2 expression, leading to upregulation of antioxidant enzymes HO-1 and NQO1. Notably, Scopoletin (30 mg/kg) restored the expression of tight junction proteins such as Occludin and ZO-1, indicating reinforcement of epithelial barrier integrity. These findings demonstrated that Scopoletin protects against UC by suppressing inflammation, enhancing antioxidant defenses, and preserving mucosal barrier integrity, highlighting its potential as a therapeutic candidate for UC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
2.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信