Kseniia R Lupyr, Pavel V Shelyakin, Konstantin A Sobyanin, Ruslan A Martynov, Vladimir S Popov, Sevastyan O Rabdano, Olga S Nikitina, Yurii G Yanushevich, Ilya A Kofiadi, Dmitry B Staroverov, Mikhail Shugay, Dmitriy M Chudakov, Olga V Britanova
{"title":"邻域富集用于抗原特异性t细胞受体的鉴定。","authors":"Kseniia R Lupyr, Pavel V Shelyakin, Konstantin A Sobyanin, Ruslan A Martynov, Vladimir S Popov, Sevastyan O Rabdano, Olga S Nikitina, Yurii G Yanushevich, Ilya A Kofiadi, Dmitry B Staroverov, Mikhail Shugay, Dmitriy M Chudakov, Olga V Britanova","doi":"10.1093/bib/bbaf495","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding T-cell receptor (TCR) specificity is not only essential for fundamental research, but could open up novel avenues for diagnostics, cancer immunotherapy, and the targeted treatment of autoimmune diseases. The immune system responds to challenges through groups of T-cells with similar TCR sequences. In recent years, searching for TCRs with an enrichment of similar sequences - neighbors - in a TCR repertoire has become a standard procedure for antigen-specific TCR identification. This study provides a systematic comparison of computational algorithms-ALICE, TCRNET, GLIPH2, and tcrdist3-that leverage neighborhood enrichment for antigen-specific TCR identification. Using published murine datasets from Lymphocytic choriomeningitis virus (LCMV) infection and novel datasets from Sputnik V vaccination and Mycobacterium tuberculosis (Mtb) infection, we evaluated the performance of these algorithms. To facilitate reproducible analysis, we developed TCRgrapher, an R library that integrates these pipelines into a user-friendly framework. TCRgrapher enables efficient identification of antigen-specific TCRs from single repertoire snapshots and supports flexible parameter customization. Our comparative analysis revealed that ALICE and TCRNET consistently outperformed GLIPH2 and tcrdist3 across most datasets, achieving higher area under precision-recall curve. While murine datasets provide valuable insights into algorithm performance, caution is advised when extrapolating these results to other species or different experimental conditions. TCRgrapher is freely available on GitHub (https://github.com/KseniaMIPT/tcrgrapher), offering researchers a robust tool for investigating TCR specificity and advancing immunological studies.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461701/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neighborhood enrichment for the identification of antigen-specific T-cell receptors.\",\"authors\":\"Kseniia R Lupyr, Pavel V Shelyakin, Konstantin A Sobyanin, Ruslan A Martynov, Vladimir S Popov, Sevastyan O Rabdano, Olga S Nikitina, Yurii G Yanushevich, Ilya A Kofiadi, Dmitry B Staroverov, Mikhail Shugay, Dmitriy M Chudakov, Olga V Britanova\",\"doi\":\"10.1093/bib/bbaf495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding T-cell receptor (TCR) specificity is not only essential for fundamental research, but could open up novel avenues for diagnostics, cancer immunotherapy, and the targeted treatment of autoimmune diseases. The immune system responds to challenges through groups of T-cells with similar TCR sequences. In recent years, searching for TCRs with an enrichment of similar sequences - neighbors - in a TCR repertoire has become a standard procedure for antigen-specific TCR identification. This study provides a systematic comparison of computational algorithms-ALICE, TCRNET, GLIPH2, and tcrdist3-that leverage neighborhood enrichment for antigen-specific TCR identification. Using published murine datasets from Lymphocytic choriomeningitis virus (LCMV) infection and novel datasets from Sputnik V vaccination and Mycobacterium tuberculosis (Mtb) infection, we evaluated the performance of these algorithms. To facilitate reproducible analysis, we developed TCRgrapher, an R library that integrates these pipelines into a user-friendly framework. TCRgrapher enables efficient identification of antigen-specific TCRs from single repertoire snapshots and supports flexible parameter customization. Our comparative analysis revealed that ALICE and TCRNET consistently outperformed GLIPH2 and tcrdist3 across most datasets, achieving higher area under precision-recall curve. While murine datasets provide valuable insights into algorithm performance, caution is advised when extrapolating these results to other species or different experimental conditions. TCRgrapher is freely available on GitHub (https://github.com/KseniaMIPT/tcrgrapher), offering researchers a robust tool for investigating TCR specificity and advancing immunological studies.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461701/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf495\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf495","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Neighborhood enrichment for the identification of antigen-specific T-cell receptors.
Understanding T-cell receptor (TCR) specificity is not only essential for fundamental research, but could open up novel avenues for diagnostics, cancer immunotherapy, and the targeted treatment of autoimmune diseases. The immune system responds to challenges through groups of T-cells with similar TCR sequences. In recent years, searching for TCRs with an enrichment of similar sequences - neighbors - in a TCR repertoire has become a standard procedure for antigen-specific TCR identification. This study provides a systematic comparison of computational algorithms-ALICE, TCRNET, GLIPH2, and tcrdist3-that leverage neighborhood enrichment for antigen-specific TCR identification. Using published murine datasets from Lymphocytic choriomeningitis virus (LCMV) infection and novel datasets from Sputnik V vaccination and Mycobacterium tuberculosis (Mtb) infection, we evaluated the performance of these algorithms. To facilitate reproducible analysis, we developed TCRgrapher, an R library that integrates these pipelines into a user-friendly framework. TCRgrapher enables efficient identification of antigen-specific TCRs from single repertoire snapshots and supports flexible parameter customization. Our comparative analysis revealed that ALICE and TCRNET consistently outperformed GLIPH2 and tcrdist3 across most datasets, achieving higher area under precision-recall curve. While murine datasets provide valuable insights into algorithm performance, caution is advised when extrapolating these results to other species or different experimental conditions. TCRgrapher is freely available on GitHub (https://github.com/KseniaMIPT/tcrgrapher), offering researchers a robust tool for investigating TCR specificity and advancing immunological studies.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.