{"title":"木质素-碳水化合物复合物的键解离能。","authors":"Thomas Elder, Martin Lawoko","doi":"10.1039/d5fd00045a","DOIUrl":null,"url":null,"abstract":"<p><p>Lignin-carbohydrate complexes, in which lignin and polysaccharides are directly connected, have been identified and extensively analyzed. To date, however, the origin of these structures has not been unequivocally established. That notwithstanding, it has been found that delignification, whether by conventional pulping and bleaching processes or in the biorefinery context, is effected by the presence of lignin-carbohydrate complexes. Using density functional theory calculations, the current work has evaluated the thermodynamics of bond dissociation as a function of structure and chemical composition. Among the lignin-carbohydrate complexes that have been identified, the homolytic bond dissociation energy is highest for the α-benzyl ethers and γ-ester, with phenyl glycosides being markedly less endothermic. This is consistent with observations on the recalcitrance of these compounds. Heterolytic cleavage reactions of the α-benzyl ethers are less endothermic, due to water solvation of the ions. The latter observation may provide support for the proposed homolytic cleavage reaction, since if heterolysis were operative, the α-benzyl ethers would not exhibit the level of recalcitrance that is observed experimentally.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bond dissociation energies of lignin-carbohydrate complexes.\",\"authors\":\"Thomas Elder, Martin Lawoko\",\"doi\":\"10.1039/d5fd00045a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lignin-carbohydrate complexes, in which lignin and polysaccharides are directly connected, have been identified and extensively analyzed. To date, however, the origin of these structures has not been unequivocally established. That notwithstanding, it has been found that delignification, whether by conventional pulping and bleaching processes or in the biorefinery context, is effected by the presence of lignin-carbohydrate complexes. Using density functional theory calculations, the current work has evaluated the thermodynamics of bond dissociation as a function of structure and chemical composition. Among the lignin-carbohydrate complexes that have been identified, the homolytic bond dissociation energy is highest for the α-benzyl ethers and γ-ester, with phenyl glycosides being markedly less endothermic. This is consistent with observations on the recalcitrance of these compounds. Heterolytic cleavage reactions of the α-benzyl ethers are less endothermic, due to water solvation of the ions. The latter observation may provide support for the proposed homolytic cleavage reaction, since if heterolysis were operative, the α-benzyl ethers would not exhibit the level of recalcitrance that is observed experimentally.</p>\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5fd00045a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5fd00045a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Bond dissociation energies of lignin-carbohydrate complexes.
Lignin-carbohydrate complexes, in which lignin and polysaccharides are directly connected, have been identified and extensively analyzed. To date, however, the origin of these structures has not been unequivocally established. That notwithstanding, it has been found that delignification, whether by conventional pulping and bleaching processes or in the biorefinery context, is effected by the presence of lignin-carbohydrate complexes. Using density functional theory calculations, the current work has evaluated the thermodynamics of bond dissociation as a function of structure and chemical composition. Among the lignin-carbohydrate complexes that have been identified, the homolytic bond dissociation energy is highest for the α-benzyl ethers and γ-ester, with phenyl glycosides being markedly less endothermic. This is consistent with observations on the recalcitrance of these compounds. Heterolytic cleavage reactions of the α-benzyl ethers are less endothermic, due to water solvation of the ions. The latter observation may provide support for the proposed homolytic cleavage reaction, since if heterolysis were operative, the α-benzyl ethers would not exhibit the level of recalcitrance that is observed experimentally.