Xuan Thi Nguyen, Satoshi Kubota, Masaharu Takigawa, Takashi Nishida
{"title":"核易位细胞通讯网络因子2与富嘌呤盒1的相互作用调控纤维化相关基因的表达","authors":"Xuan Thi Nguyen, Satoshi Kubota, Masaharu Takigawa, Takashi Nishida","doi":"10.1002/ccs3.70051","DOIUrl":null,"url":null,"abstract":"<p>Cellular communication network factor 2 (CCN2) with a nuclear localization signal-like peptide is known to promote fibrosis. However, translocation of CCN2 into the nucleus and its role in fibrosis remain unclear. We hypothesized that nuclear-translocated CCN2 is associated with purine-rich box 1 (PU.1), which is a transcription factor regulating the differentiation of myofibroblasts. Western blot analysis of the cytoplasmic and nuclear fractions of cell lysate and immunofluorescence analysis revealed that CCN2 was detectable in both the cytoplasm and nuclei of murine fibroblastic NIH3T3 cells. Additionally, chromatin immunoprecipitation (IP)-PCR and an electrophoretic mobility shift assay revealed that recombinant CCN2 protein bound to the regulatory region of <i>Spi1</i>, which encodes PU.1. Furthermore, IP-Western blot analysis showed that CCN2 interacted with PU.1. Finally, the forced expression of both <i>Ccn2</i> and <i>Spi1</i> significantly promoted the production of angiotensin II, and increased fibrosis-related molecules, such as <i>Col1a1</i> and <i>Acta2</i>, at the gene and protein levels. These findings indicate that CCN2 translocated to the nucleus interacts with PU.1 and that the complex promotes the markers of myofibroblast differentiation, suggesting that CCN2 plays an important role in fibrosis via cooperation with PU.1, as a transcription co-factor.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70051","citationCount":"0","resultStr":"{\"title\":\"Interaction between nuclear-translocated cellular communication network factor 2 and purine-rich box 1 regulates the expression of fibrosis-related genes\",\"authors\":\"Xuan Thi Nguyen, Satoshi Kubota, Masaharu Takigawa, Takashi Nishida\",\"doi\":\"10.1002/ccs3.70051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellular communication network factor 2 (CCN2) with a nuclear localization signal-like peptide is known to promote fibrosis. However, translocation of CCN2 into the nucleus and its role in fibrosis remain unclear. We hypothesized that nuclear-translocated CCN2 is associated with purine-rich box 1 (PU.1), which is a transcription factor regulating the differentiation of myofibroblasts. Western blot analysis of the cytoplasmic and nuclear fractions of cell lysate and immunofluorescence analysis revealed that CCN2 was detectable in both the cytoplasm and nuclei of murine fibroblastic NIH3T3 cells. Additionally, chromatin immunoprecipitation (IP)-PCR and an electrophoretic mobility shift assay revealed that recombinant CCN2 protein bound to the regulatory region of <i>Spi1</i>, which encodes PU.1. Furthermore, IP-Western blot analysis showed that CCN2 interacted with PU.1. Finally, the forced expression of both <i>Ccn2</i> and <i>Spi1</i> significantly promoted the production of angiotensin II, and increased fibrosis-related molecules, such as <i>Col1a1</i> and <i>Acta2</i>, at the gene and protein levels. These findings indicate that CCN2 translocated to the nucleus interacts with PU.1 and that the complex promotes the markers of myofibroblast differentiation, suggesting that CCN2 plays an important role in fibrosis via cooperation with PU.1, as a transcription co-factor.</p>\",\"PeriodicalId\":15226,\"journal\":{\"name\":\"Journal of Cell Communication and Signaling\",\"volume\":\"19 4\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70051\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70051","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Interaction between nuclear-translocated cellular communication network factor 2 and purine-rich box 1 regulates the expression of fibrosis-related genes
Cellular communication network factor 2 (CCN2) with a nuclear localization signal-like peptide is known to promote fibrosis. However, translocation of CCN2 into the nucleus and its role in fibrosis remain unclear. We hypothesized that nuclear-translocated CCN2 is associated with purine-rich box 1 (PU.1), which is a transcription factor regulating the differentiation of myofibroblasts. Western blot analysis of the cytoplasmic and nuclear fractions of cell lysate and immunofluorescence analysis revealed that CCN2 was detectable in both the cytoplasm and nuclei of murine fibroblastic NIH3T3 cells. Additionally, chromatin immunoprecipitation (IP)-PCR and an electrophoretic mobility shift assay revealed that recombinant CCN2 protein bound to the regulatory region of Spi1, which encodes PU.1. Furthermore, IP-Western blot analysis showed that CCN2 interacted with PU.1. Finally, the forced expression of both Ccn2 and Spi1 significantly promoted the production of angiotensin II, and increased fibrosis-related molecules, such as Col1a1 and Acta2, at the gene and protein levels. These findings indicate that CCN2 translocated to the nucleus interacts with PU.1 and that the complex promotes the markers of myofibroblast differentiation, suggesting that CCN2 plays an important role in fibrosis via cooperation with PU.1, as a transcription co-factor.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.